Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Получение алканов. Лабораторные и промышленные методы синтеза




Фракционный состав нефти

Природные источники и методы получения алканов

Углеводороды

Лекция № 7

· Основные методы получения алканов: гидрирование алкенов и алкинов, восстановление кислород- и галогенсодержащих соединений, реакция Вюрца, декарбоксилирование и электролиз солей карбоновых кислот. Природные источники алканов.

Основные природные источники предельных углеводородов - нефтяные и газовые месторождения. Природный газ содержит в основном низшие алканы, находящиеся при н.у. в газообразном состоянии (метан, этан, пропан и бутан).

Сырая нефть состоит из сотен химических соединений. Для получения веществ, которые можно использовать в качестве горючего и сырья для химической промышленности, сырую нефть подвергаю фракционной перегонке. Получаемые фракции представляют собой смеси органических соединений различных классов, кипящих в соответствующем интервале температур.


Фракция Т. кип. (оС) Число атомов углерода Применение
Газ < 20 C1 – C4 Топливо
Петролейный эфир 20 – 100 С5 – С7 Растворитель
Природный бензин 40 – 205 С5 – С10 и циклоалканы Двигатели внутреннего сгорания
Керосин 175 – 325 С12 – С18 и ароматические углеводороды Реактивные двигатели
Газойль (соляровое масло) 200 – 400 С12 и выше Дизельные двигатели
Смазочные масла Нелетучие жидкие Высшие алканы, содержащие циклические фрагменты Смазочные масла
Асфальт (битум) Нелетучие твердые Полициклические Покрытие дорог

Выделяемые из нефтяных фракций индивидуальные химические соединения являются ценнейшим сырьем для получения массы необходимых продуктов (лекарства, полимеры и т.д.).

Все методы получения органических соединений могут быть разделены на две большие группы: промышленные и лабораторные.

В промышленности обычно получают вещество в больших количествах, стремясь к максимальной рентабельности. Часто можно использовать не чистое органическое соединение, а смесь. В ряде случаев экономически выгодно проводить разделение даже сложных смесей, в особенности, если одновременно удается выделить и другие полезные вещества. Известно много случаев, когда оказывается прибыльна разработка уникального метода синтеза и построение специального предприятия для выпуска высокорентабельного вещества.

В лаборатории обычно необходимо синтезировать небольшие количества вещества (граммы и доли грамма). В исследованиях химикам почти всегда необходимы индивидуальные вещества, а не смеси. В отличие от промышленности время имеет большую ценность, чем цена. Кроме того, лабораторные синтезы всегда гибкие, потому что исследователь не заинтересован в многократном повторении изученного процесса. Поэтому используются методы, позволяющие быстро, с высоким выходом получить целевой продукт с минимальным содержанием примесей.



Важно, что лабораторные (но не промышленные) методы, как правило, могут быть распространены на весь класс синтезируемых соединений.

В ходе изучения курса органической химии основное внимание направлено на лабораторные методы получения. При решении задач не следует использовать промышленные методы, даже в том случае, если они используются для получения именно того вещества, синтез которого необходимо спланировать. Например, если в ходе синтеза необходимо синтезировать этилен, его следует получать, используя общие методы синтеза алкенов, хотя это соединение в огромных количествах получают крекингом.

Алкены и алкины в присутствии гетерогенных катализаторов, таких как Pt, Pd, Ni, легко присоединяют один или два моль водорода при незначительном нагревании и невысоком давлении. При этом количественно образуются алканы с тем же углеродным скелетом.

Галогенопроизводные насыщенных углеводородов могут быть восстановлены до алканов металлом в кислой среде:

Алканы могут быть получены гидролизом реактивов Гриньяра:

Приведенные выше методы позволяют синтезировать алканы, имеющие такой же углеродный скелет, как в исходной молекуле.

Для синтеза парафинов, строение углеродной цепи которых отличается от исходных веществ, известно несколько методов. Моногалогенопроизводные алканов при взаимодействии с металлическим натрием превращаются в предельные углеводороды по реакции Вюрца. В ходе реакции образуется углерод-углеродная связь между атомами углерода, связанными в исходном соединении с галогенами.

Реакция Вюрца может быть использована исключительно для синтеза симметричных алканов (R-R) с четным числом углеродных атомов. Во избежание образования смесей алканов в эту реакцию нужно вводить только одно галогенопроизводное.

Ограничения реакции Вюрца понятны из следующего примера.

В реакции образуется смесь пропана, этана и н-бутана. Поскольку скорости реакций близки, невозможно предложить условия, в которых образование пропана будет преобладающим процессом. Следовательно, две трети исходных веществ будут израсходованы впустую. Кроме того, возникает сложная проблема разделения продуктов реакции.

При распространении реакции Вюрца на более сложные галогенопроизводные следует соблюдать осторожность. Щелочные металлы обладают очень высокой реакционной способностью. Если в молекуле, кроме атома галогена, есть функциональные группы, в большинстве случаев реакция натрия или калия с ними пойдет быстрее, чем с галогеном. Не имеет смысла даже пытаться проводить реакцию Вюрца, если в молекуле наряду с галогеном есть гидрокси- (OH), карбокси- (СOOH), сульфо- (SO3H) и многие другие группировки.

Одним из способов получения алканов является реакция декарбоксилирования (отщепления СО2) солей карбоновых кислот. В некоторых случаях этот процесс происходит очень легко уже при незначительном нагревании. Hасыщенные карбоновые кислоты алифатического ряда отщепляют карбоксильную группу только при прокаливании их солей со щелочью.

В результате декарбоксилирования образуется алкан, содержащий на один атом углерода меньше, чем было в исходной кислоте.

Если соль карбоновой кислоты алифатического ряда подвергнуть электролизу (анодный синтез Кольбе), то на аноде карбоксилат-анион отдает электроду один электрон, превращаясь в нестабильный радикал. Выброс СО2 приводит к алкильному радикалу. При рекомбинации двух алкильных радикалов образуется симметричный алкан с четным числом атомов углерода.





Дата добавления: 2014-01-05; Просмотров: 1287; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.92.178.105
Генерация страницы за: 0.09 сек.