Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Прерывания. Прерывания представляют собой механизм, позволяющий координировать парал­лельное функционирование отдельных устройств вычислительной системы и реа­гировать на




Прерывания представляют собой механизм, позволяющий координировать парал­лельное функционирование отдельных устройств вычислительной системы и реа­гировать на особые состояния, возникающие при работе процессора, то есть пре­рывание — это принудительная передача управления от выполняемой программы к системе (а через нее — к соответствующей программе обработки прерывания), происходящая при возникновении определенного события.

Идея прерывания была предложена также очень давно — в середине 50-х годов, — и можно без преувеличения сказать, что она внесла наиболее весомый вклад в раз­витие вычислительной техники. Основная цель введения прерываний — реализа­ция асинхронного режима функционирования и распараллеливание работы отдель­ных устройств вычислительного комплекса.

Механизм прерываний реализуется аппаратно-программными средствами. Струк­туры систем прерывания (в зависимости от аппаратной архитектуры) могут быть самыми разными, но все они имеют одну общую особенность — прерывание непре­менно влечет за собой изменение порядка выполнения команд процессором.

Механизм обработки прерываний независимо от архитектуры вычислительной системы подразумевает выполнение некоторой последовательности шагов.

1. Установление факта прерывания (прием сигнала запроса на прерывание) и идентификация прерывания (в операционных системах идентификация пре­рывания иногда осуществляется повторно, на шаге 4),

2. Запоминание состояния прерванного процесса вычислений. Состояние процесса выполнения программы определяется, прежде всего, значением счетчика ко­манд (адресом следующей команды, который, например, в i80x86 определяется регистрами CS и IP— указателем команды [1, 8, 48]), содержимым регистров процессора, и может включать также спецификацию режима (например, режим пользовательский или привилегированный) и другую информацию.

3. Управление аппаратно передается на подпрограмму обработки прерывания. В простейшем случае в счетчик команд заносится начальный адрес подпро­граммы обработки прерываний, а в соответствующие регистры — информация из слова состояния. В более развитых процессорах, например в 32-разрядных микропроцессорах фирмы Intel (начиная с i80386 и включая последние про­цессоры Pentium IV) и им подобных, осуществляются достаточно сложная про­цедура определения начального адреса соответствующей подпрограммы обра­ботки прерывания и не менее сложная процедура инициализации рабочих регистров процессора (подробно эти вопросы рассматриваются в разделе «Си­стема прерываний 32-разрядных микропроцессоров i80x86» главы 4).

4. Сохранение информации о прерванной программе, которую не удалось спасти на шаге 2 с помощью аппаратуры. В некоторых процессорах предусматривает­ся запоминание довольно большого объема информации о состоянии прерван­ных вычислений.

5. Собственно выполнение программы, связанной с обработкой прерывания. Эта работа может быть выполнена той же подпрограммой, на которую было передано управление на шаге 3, но в операционных системах достаточно часто она реализуется путем последующего вызова соответствующей подпрограммы.

6. Восстановление информации, относящейся к прерванному процессу (этап, об­ратный шагу 4).

7. Возврат на прерванную программу. Шаги 1-3 реализуются аппаратно, шаги 4-7 — программно.

Средствами аппаратуры сохраняется (как пра­вило, с помощью механизмов стековой памяти) адрес той команды, с которой следу­ет продолжить выполнение прерванной программы. После выполнения программы обработки прерывания управление возвращается на прерванную ранее программу посредством занесения в указатель команд сохраненного адреса команды, кото­рую нужно было бы выполнить, если бы не возникло прерывание. Однако такая схема используется только в самых простых программных средах. В мультипро­граммных операционных системах обработка прерываний происходит по более сложным схемам, о чем будет более подробно написано ниже.

Итак, главные функции механизма прерываний — это:

— распознавание или классификация прерываний;

— передача управления соответствующему обработчику прерываний;

— корректное возвращение к прерванной программе.

Переход от прерываемой программы к обработчику и обратно должен выполнять­ся как можно быстрей. Одним из самых простых и быстрых методов является ис­пользование таблицы, содержащей перечень всех допустимых для компьютера прерываний и адреса соответствующих обработчиков. Для корректного возвраще­ния к прерванной программе перед передачей управления обработчику прерыва­ний содержимое регистров процессора запоминается либо в памяти с прямым до­ступом, либо в системном стеке (system stack).

Прерывания, возникающие при работе вычислительной системы, можно разделить на два основных класса: внешние (их иногда называют асинхронными) и внутрен­ние (синхронные).

Внешние прерывания вызываются асинхронными событиями, которые происходят вне прерываемого процесса, например:

— прерывания от таймера;

— прерывания от внешних устройств (прерывания по вводу-выводу); О прерывания по нарушению питания; а прерывания с пульта оператора вычислительной системы; а прерывания от другого процессора или другой вычислительной системы.

Внутренние прерывания вызываются событиями, которые связаны с работой про­цессора и являются синхронными с его операциями. Примерами являются следу­ющие запросы на прерывания:

— при нарушении адресации (в адресной части выполняемой команды указан зап­рещенный или несуществующий адрес, обращение к отсутствующему сегменту или странице при организации механизмов виртуальной памяти);

— при наличии в поле кода операции незадействованной двоичной комбинации; а при делении на ноль;

— вследствие переполнения или исчезновения порядка;

— от средств контроля (например, вследствие обнаружения ошибки четности, ошибок в работе различных устройств).

Могут еще существовать прерывания в связи с попыткой выполнить команду, ко­торая сейчас запрещена. Во многих компьютерах часть команд должна выполняться только кодом самой операционной системы, но не прикладными программами. Это делается с целью повышения защищенности выполняемых на компьютере вычис­лений. Соответственно в аппаратуре предусмотрены различные режимы работы, и пользовательские программы выполняются в режиме, в котором некоторое подмножество команд, называемых привилегированными, не исполняется. К приви­легированным командам помимо команд ввода-вывода относятся и команды пе­реключения режима работа центрального процессора, и команды инициализации некоторых системных регистров процессора. При попытке использовать команду, запрещенную в данном режиме, происходит внутреннее прерывание, и управле­ние передается самой операционной системе.

Наконец, существуют собственно программные прерывания. Эти прерывания про­исходят по соответствующей команде прерывания, то есть по этой команде про­цессор осуществляет практически те же действия, что и при обычных внутренних прерываниях. Этот механизм был специально введен для того, чтобы переключе­ние на системные программные модули происходило не просто как переход на подпрограмму, а точно таким же образом, как и обычное прерывание. Этим, преж­де всего, обеспечивается автоматическое переключение процессора в привилеги­рованный режим с возможностью исполнения любых команд.

Сигналы, вызывающие прерывания, формируются вне процессора или в самом процессоре, они могут возникать одновременно. Выбор одного из них для обра­ботки осуществляется на основе приоритетов, приписанных каждому типу преры­вания. Так, со всей очевидностью, прерывания от схем контроля процессора долж­ны обладать наивысшим приоритетом (действительно, если аппаратура работает неправильно, то не имеет смысла продолжать обработку информации. Учет приоритета может быть встроен в технические средства, а также определяться операционной системой, то есть кроме аппаратно реализо­ванных приоритетов прерывания большинство вычислительных машин и комп­лексов допускают программно-аппаратное управление порядком обработки сигна­лов прерывания. Второй способ, дополняя первый, позволяет применять различные дисциплины обслуживания прерываний.

Наличие сигнала прерывания не обязательно должно вызывать прерывание ис­полняющейся программы. Процессор может обладать средствами защиты от пре­рываний: отключение системы прерываний, маскирование (запрет) отдельных сигналов прерывания. Программное управление этими средствами (существуют спе­циальные команды для управления работой системы прерываний) позволяет опе­рационной системе регулировать обработку сигналов прерывания, заставляя про­цессор обрабатывать их сразу по приходу; откладывать обработку на некоторое время; полностью игнорировать прерывания. Обычно операция прерывания вы­полняется только после завершения выполнения текущей команды. Поскольку сигналы прерывания возникают в произвольные моменты времени, то на момент прерывания может существовать несколько сигналов прерывания, которые могут быть обработаны только последовательно. Чтобы обработать сигналы прерывания в разумном порядке, им (как уже отмечалось) присваиваются приоритеты. Сигнал с более высоким приоритетом обрабатывается в первую очередь, обработка осталь­ных сигналов прерывания откладывается.

Программное управление специальными регистрами маски (маскирование сигна­лов прерывания) позволяет реализовать различные дисциплины обслуживания.

С относительными приоритетами, то есть обслуживание не прерывается даже при наличии запросов с более высокими приоритетами. После окончания об­служивания данного запроса обслуживается запрос с наивысшим приоритетом. Для организации такой дисциплины необходимо в программе обслуживания данного запроса наложить маски на все остальные сигналы прерывания или просто отключить систему прерываний.

С абсолютными приоритетами, то есть всегда обслуживается прерывание с наивысшим приоритетом. Для реализации этого режима необходимо на время обработки прерывания замаскировать все запросы с более низким приорите­том. При этом возможно многоуровневое прерывание, то есть прерывание про­грамм обработки прерываний. Число уровней прерывания в этом режиме изме­няется и зависит от приоритета запроса.

— По принципу стека, или, как иногда говорят, по дисциплине LCFS (Last Come First Served — последним пришел, первым обслужен), то есть запросы с более низким приоритетом могут прерывать обработку прерывания с более высоким приоритетом. Дли этого необходимо не накладывать маску ни на один из сиг­налов прерывания и не выключать систему прерываний.

Следует особо отметить, что для правильной реализации последних двух дисцип­лин нужно обеспечить полное маскирование системы прерываний при выполне­нии шагов 1-4 и 6-7. Это необходимо для того, чтобы не потерять запрос и пра­вильно его обслужить. Многоуровневое прерывание должно происходить на этапе собственно обработки прерывания, а не на этапе перехода с одного процесса вы­числений на другой.

Управление ходом выполнения задач со стороны операционной системы заключа­ется в организации реакций на прерывания, в организации обмена информацией (данными и программами), в предоставлении необходимых ресурсов, в динамике выполнения задачи и в организации сервиса. Причины прерываний определяет операционная система (модуль, который называют супервизором прерываний), она же и выполняет действия, необхбдимые при данном прерывании и в данной ситуа­ции. Поэтому в состав любой операционной системы реального времени прежде всего входят программы управления системой прерываний, контроля состояний задач и событий, синхронизации задач, средства распределения памяти и управле­ния ею, а уже потом средства организации данных (с помощью файловых систем и т, д. Следует однако заметить, что современная операционная система реального времени должна вносить в аппаратно-программный комплекс нечто большее, не­жели просто обеспечение быстрой реакции на прерывания.

Супервизор прерываний прежде всего сохраняет в дескрипторе текущей задачи ра­бочие регистры процессора, определяющие контекст прерываемого вычислитель­ного процесса. Далее он определяет ту подпрограмму, которая должна выполнить действия, связанные с обслуживанием настоящего (текущего) запроса на преры­вание, Наконец, перед тем, как передать управление на эту подпрограмму, супер­визор прерываний устанавливает необходимый режим обработки прерывания. После выполнения подпрограммы обработки прерывания управление вновь пере­дается ядру операционной системы. На этот раз уже на тот модуль, который зани­мается диспетчеризацией задач (см. раздел «Планирование и диспетчеризация процессов и задач» в главе 2). И уже диспетчер задач, в свою очередь, в соответ­ствии с принятой дисциплиной распределения процессорного времени (между выполняющимися вычислительными процессами) восстановит контекст той за­дачи, которой будет решено выделить процессор. Рассмотренную нами схему ил­люстрирует рис. 1.4.

Как мы видим из рисунка, здесь отсутствует возврат в прерванную ранее програм­му непосредственно из самой подпрограммы обработки прерывания. Для прямого возврата достаточно адрес возврата сохранить в стеке, что и делает аппаратура процессора. При этом стек легко обеспечивает возможность возврата в случае вло­женных прерываний, поскольку он всегда реализует дисциплину LCFS.

 

Однако если бы контекст вычислительных процессов сохранялся просто в стеке, как это обычно реализуется аппаратурой, а не в специальных структурах данных, называемых дескрипторами, о чем будет подробно изложено чуть позже, то у нас не было бы возможности гибко подходить к выбору той задачи, которой нужно передать процессор после завершения работы подпрограммы обработки прерыва­ния. Естественно, что это только общий принцип. В конкретных процессорах и в конкретных операционных системах могут существовать некоторые отступления от рассмотренной схемы и/или дополнения. Например, в современных процессо­рах часто имеются специальные аппаратные возможности для сохранения контек­ста прерываемого вычислительного процесса непосредственно в его дескрипторе, то есть дескриптор процесса (по крайней мере его часть) становится структурой. данных, которую поддерживает аппаратура.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1193; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.