Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Постановка задачи исследования устойчивости линейных систем автоматического управления. Алгебраические критерии устойчивости. Критерий Рауса, критерий Гурвица




При рассмотрении объектов управления указывалось, что их состояние равновесия может быть устойчивым, неустойчи­вым и нейтральным. То же можно сказать и о системах автоматического регулирования.

Неустойчивый объект может входить в устойчивую систему автоматического регулирования. В этом случае речь идет о системах с искусственной устойчивостью. Однако неустой­чивые линейные системы автоматического регулирования сами по себе без дополнительных устройств искусственной устой­чивости не могут быть применены на практике. Поэтому пер­вым условием работоспособности линейной системы автомати­ческого регулирования является ее устойчивость.

Необходимым и достаточным условием устойчивости линейного звена является отрицатель­ное значение вещественной части всех полюсов передаточной функции этого звена.

Для разомкнутой системы регулирования

(2.1.1)


где и алгебраические полиномы от р. Усло­вием устойчивости разомкнутой системы является отрицатель­ный знак вещественной части корней характеристического уравнения

(2.1.2)


Рассмотрим в качестве передаточной функции замкнутой системы передаточную функцию по регулируемой величи­не

(2.1.3)


Подставив выражение из (2.1.1), получим

(2.1.4)


Вводя общее обозначение передаточной функции замкнутой системы

(2.1.5)


во всех случаях для знаменателя замкнутой системы получается

(2.1.6)


Условием устойчивости замкнутой системы является отри­цательный знак вещественной части всех корней характери­стического уравнения

(2.1.7)


Исследование устойчивости сводится, таким образом, к оп­ределению знаков вещественной части корней характеристиче­ского уравнения, т.е. к вопросу распределения корней относи­тельно мнимой оси в комплексной плоскости р.

Уравнения степени не выше 4-й могут быть решены, так как для них существуют аналитические выражения, определяющие их корни. Для уравнений более высокой степени (степени 5-й и выше) таких выражений нет. Но для суждения об устойчиво­сти нет необходимости знать значение корней, достаточно лишь иметь суждение о знаке их вещественной части.

Существенным является выяснение правил, которые позволили бы, минуя вычисление самих корней, ответить на вопрос: как распределены корни в комплексной плоскости от­носительно мнимой оси. Правила, позволяющие определить рас­положение корней относительно мнимой оси, называются крите­риями устойчивости.

Существует несколько критериев устойчивости. Все они ма­тематически эквивалентны, так как решают вопрос — лежат ли все корни характеристического уравнения в левой полу­плоскости или нет. Практическое использование того или иного критерия для конкретной задачи решается характером самой задачи.

В настоящее время при решении вопроса об устойчивости используются следующие критерии: алгебраические — а) Рауса, б) Гурвица; частотные —а) Михайлова, б) Найквиста.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 703; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.