Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решения задач линейного программирования




Графическая интерпретация

 

Задачу линейного программирования (ЛП) можно решать аналитическими и графическими методами. Аналитические методы являются основой для решения задачи на ЭВМ. Их единственный недостаток состоит в том, что в отличие от графических методов, они недостаточно наглядны. Графические методы очень наглядны, но они пригодны лишь для решения задач на плоскости, т.е. когда размерность пространства К=2. Однако, учитывая большую наглядность графических методов, с их помощью рассмотрим идею решения задачи ЛП на примере задачи распределения ресурсов.

Однако прежде чем заняться решением, сделаем некоторые замечания. Пусть мы имеем систему m уравнения с n неизвестными (I).

 

Возможны следующие варианты:

 

À Число неизвестных меньше, чем число уравнений n < m.

 

например: ì2x1=4, в этом случае n =1;

îx1=5, тогда m =2 (число линейно независимых уравнений). (4.4)

 

Очевидно, что система (4.4) решения не имеет, и она несовместна;

 

Á Число неизвестных равно числу уравнений n=m.

В этом случае система имеет единственное решение или не имеет ни одного. Заметим, что m равно числу линейно независимых уравнений.

Для системы: ì2x=10, n =1, m =1;

î6x=30.

 

 Если число неизвестных больше числа уравнений, то система имеет бесчисленное множество решений. Пусть n > m. Например:

 

2x1+x2=2 (4.5)

 

Очевидно, что это уравнение прямой, и все значения x1 и x2, лежащие на этой прямой, являются решением уравнения (4.2). Значит уравнение (4.5) имеет бесчисленное множество решений.

 

В случае, когда система имеет больше одного возможного решения, может быть поставлена задача оптимизации, суть которой в том, что из всех допустимых решений, удовлетворяющих ограничениям и граничным условиям, выбрать такое, которое придает целевой функции оптимум. Вспомним построение линейных зависимостей. Пусть дано уравнение:

 

a1x1+a2x2=b (4.6)

 

Преобразуем его к виду:

 

(4.7)

 

Запись (4.7) называют уравнением прямой в отрезках, что изображено на Рис. 4.1. Рассмотрим еще одну форму представления уравнения (4.6). Запишем это уравнение в виде:

 

a2x2=b-a1x1

или

 

 

или

 

x2=F-kx1 (4.8)

 

Уравнение (4.8) изображено на рис. 4.2.

 

 

Вспомним неравенства. Если линейное уравнение с двумя переменными может быть представлено в виде прямой на плоскости, то неравенство вида:

 

a1x1+a2x2 £ b (4.9)

 

изображается как полуплоскость, показанная на рис. 4.1. На этом рисунке часть плоскости, удовлетворяющая неравенству, заштрихована. Координаты всех точек, принадлежащих заштрихованному участку, имеют такие значения x1 и x2, которые удовлетворяют заданному неравенству. Значит, эти значения составляют область допустимых решений (ОДР). Саму прямую считаем принадлежащей каждой из двух указанных полуплоскостей. Предположим теперь, что задано не одно неравенство, а система:

 

ìа11x112x2 £ b1

ïа21x122x2 £ b2

(4.10) í............

îаm1x1m2x2 £ bm,

где первое неравенство определяет некоторую полуплоскость П1, второе - полуплоскость П2 и т.д.

 

если какая-либо пара чисел (x1, x2) удовлетворяет всем неравенствам (4.10), то, соответствующая точка Р(x1, x2), принадлежит всем полуплоскостям П1, П2,... Пm одновременно. Другими словами, точка Р принадлежит пересечению (общей части) полуплоскостей П1, П2,... Пm, т.е. некоторой многоугольной области М (Рис. 4.3), которая является ОДР. Вдоль контура области изображены штрихи, идущие внутрь области. Они одновременно указывают, с какой стороны от данной прямой лежит соответствующая полуплоскость, то же самое указано и с помощью стрелок на каждой линии. Сразу же отметим, что ОДР не всегда бывает, ограничена: в результате пересечения нескольких полуплоскостей может возникнуть и неограниченная область (Рис. 4.4). Возможен и случай, когда область допустимых решений (ОДР) пуста. Это означает, что система (5.7) противоречива (Рис. 4.5). Многоугольник ОДР обладает весьма важным свойством: он является выпуклым.

 

þ фигура называется выпуклой, если вместе с любыми двумя своими точками А и В, она содержит и весь отрезок АВ.

 

В случае трех неизвестных, каждое уравнение представляет собой плоскость в пространстве. Каждая плоскость разбивает все пространство на два полупространства. Система неравенств определяет в пространстве выпуклый объемный многогранник, который представляет ОДР.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.