Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Световая микроскопия

Лекция 13. Микроскопия как метод исследования клеток и тканей.

План:

1. Световая микроскопия.

2. Электронная микроскопия.

Современная цитология располагает многочисленными и разнообразными методами исследования, без которых было бы невозможно накопление и совершенствование знаний о строении и функциях клеток. В настоящей главе мы познакомимся лишь с основными, наиболее важными методами исследования.

Современный световой микроскоп представляет весьма совершенный прибор, который до сих пор имеет первостепенное значение в изучении клеток и их органоидов. С помощью светового микроскопа достигается увеличение в 2000-2500 раз. Увеличение микроскопа зависит от его разрешающей способности, т. е. наименьшего расстояния между двумя точками, которые видны раздельно.

Чем меньше частица, видимая в микроскоп, тем больше его разрешающая способность. Последняя, в свою очередь, определяется апертурой объектива (апертура - действующее отверстие оптической системы, определяемое размерами линз или диафрагмами) и длиной волны света.

Определение разрешающей способности микроскопа производится по формуле: а = 0,6,где а -- минимальное расстояние между двумя точками; -- длина волны света; п -- показатель преломления среды, находящейся между препаратом и первой, т. е. фронтальной, линзой объектива; a -- угол между оптической осью объектива и наиболее сильно отклоняющимся лучом, попадающим в объектив, или угол дифракции лучей.

Величина, указанная в знаменателе дроби (n sin a), постоянна для каждого объектива и называется его численной апертурой. Численная апертура, а также увеличение гравируются на оправе объектива. Соотношение между численной апертурой и минимальным разрешаемым расстоянием таково: чем больше численная апертура, тем меньше это расстояние, т. е. тем выше разрешение микроскопа.

Повышение разрешающей способности микроскопа, совершенно необходимое для исследования деталей строения клетки, достигается двумя путями:

1) увеличением численной апертуры объектива;

2) уменьшением длины волны света, которым освещается препарат.

С целью увеличения численной апертуры применяются иммерсионные объективы. В качестве жидкостей служат: вода (я=1,33), глицерин (я=1,45), кедровое масло (/1=1,51) по сравнению с п воздуха, равным 1.

Поскольку показатель преломления иммерсионных жидкостей больше 1, то численная апертура объектива повышается и в него могут попадать лучи, составляющие с оптической осью объектива больший угол, чем в том случае, когда между фронтальной линзой объектива и препаратом находится воздух.

Второй путь увеличения разрешающей способности микроскопа заключается в применении ультрафиолетовых лучей, длина волны которых меньше длины волны лучей видимого света.

Однако разрешающая способность микроскопа может быть повышена только до определенного предела, ограниченного длиной световых волн. Наименьшие частицы, которые хорошо видны в современный световой микроскоп, должны иметь величину больше '/з длины волны света. Это значит, что при использовании видимой части дневного света с длиной волны от 0,004 до 0,0007 мм в микроскоп будут видны частицы не меньше 0,0002-0,0003 мм. Следовательно, с помощью современных микроскопов удается рассмотреть те детали строения клетки, которые имеют величину не меньше 0,2-0,3 мк.

В настоящее время создано много разнообразных моделей световых микроскопов. Они обеспечивают возможность многостороннего исследования клеточных структур и их функции.

Биологический микроскоп. Биологический микроскоп (МБИ-1, МБИ-2, МБИ-3, МБР и др.) предназначен для изучения препаратов, освещаемых проходящим светом. Именно этот тип микроскопа наиболее широко распространен для изучения строения клеток и других объектов.

Однако с помощью биологического микроскопа удается детально изучить главным образом фиксированные и окрашенные препараты клеток. Большинство живых неокрашенных клеток в проходящем свете бесцветны и прозрачны (они не поглощают света), п их не удается рассмотреть подробно.

Фазовоконтрастная микроскопия. Контрастное изображение препаратов живых клеток, почти невидимых при наблюдении их в биологическом микроскопе, дает фазовоконтрастное устройство).

Метод фазового контраста основан на том, что отдельные участки прозрачного препарата отличаются от окружающей среды по показателю преломления. Поэтому проходящий через них свет распространяется с различной скоростью, т. е. испытывает смещение фаз, что выражается в изменении яркости. Фазовые изменения световых волн превращаются в световые колебания разной амплитуды, и получается воспринимаемое глазом контрастное изображение препарата, в котором распределение освещённостей соответствует распределяет широкие возможности в изучении живых клеток, их органоидов и включений в неповрежденном состоянии. Это обстоятельство играет важную роль, так как фиксация и окраска клеток, как правило, повреждает клеточные структуры.

Фазовоконтрастное устройство к биологическому микроскопу состоит из набора фазовых объективов, отличающихся от обычных наличием кольцеобразной фазовой пластинки, конденсора с набором кольцевых диафрагм и вспомогательного микроскопа, который увеличивает изображение кольцевой диафрагмы н фазовой пластинки при их совмещении.

Интерференционная микроскопия. Метод интерференционного контраста близок к методу фазовоконтрастной микроскопии и дает возможность получать контрастные изображения неокрашенных прозрачных живых клеток, а также вычислить сухой вес клеток. Специальный интерференционный микроскоп, применяемый для этих целей, устроен так, что пучок параллельных световых лучей, идущих от источника света, разделяется на две параллельные ветви -- верхнюю и нижнюю.

Нижняя ветвь проходит через препарат, и фаза ее светового колебания изменяется, а верхняя волна остается неизменной. За препаратом, т.е. в призмах объектива, обе ветви вновь соединяются и интерферируют между собой. В результате интерференции участки препарата, обладающие различной толщиной или неодинаковыми показателями преломления, окрашиваются в разные цвета и становятся контрастными и хорошо видимыми.

Флуоресцентная микроскопия. Подобно методу фазового контраста флуоресцентная (или люминесцентная) микроскопия дает возможность изучать живую клетку. Флуоресценцией называется свечение объекта, возбуждаемое поглощенной им световой энергией. Возбуждать флуоресценцию можно ультрафиолетовыми, а также синими н фиолетовыми лучами.

Целый ряд структур и веществ, содержащихся в клетках, обладает собственной (или первичной) флуоресценцией. Например, зеленый пигмент хлорофилл, содержащийся в хлоропластах растительных клеток, обладает характерной ярко-красной флуоресценцией. Довольно яркое свечение дают витамины А и B, некоторые пигменты бактериальных клеток; это позволяет распознавать отдельные виды бактерий.

Однако большинство веществ, содержащихся в клетках, не обладает собственной флуоресценцией. Такие вещества начинают светиться, обнаруживая разнообразную окраску, только после предварительной обработки люминесцентными красителями (вторичная флуоресценция). Эти красители носят название флуорохромов, К ним относятся флуоресцеин, акридин оранжевый, берберин-сульфат, флоксин и др. Флуорохромы обычно применяются в очень слабых концентрациях (например, 1:10000, 1:100000) и не повреждают живую клетку. Многие из флуорохромов избирательно окрашивают отдельные клеточные структуры и вещества в определенный свет. Так, акридин оранжевый при определенных условиях окрашивает дезоксирибонуклеиновую кислоту (ДНК) в зеленый, а рибонуклеиновую кислоту (РНК) в оранжевый цвета. Поэтому вторичная флуоресценция с акридином оранжевым сейчас один из важных методов изучения локализации нуклеиновых кислот в клетках различных организмов.

Кроме того, применение флуорохромов дает возможность получить контрастные, удобные для наблюдения препараты, на которых легко можно найти нужные структуры, распознать клетки бактерий и сосчитать их. Метод флуоресцентной микроскопии позволяет также изучить изменения клеток и отдельных внутриклеточных структур при разных функциональных состояниях, дает возможность различать живые и мертвые клетки.

При использовании в качестве источника флуоресценции синих и фиолетовых лучей света аппаратура состоит из обычного биологического микроскопа, низковольтной лампы (для микроскопа) е синим светофильтром, который пропускает лучи, возбуждающие флуоресценцию, и желтого светофильтра, убирающего излишние синие лучи. Применение же ультрафиолетовых лучей как источника флуоресценции требует специального флуоресцентного микроскопа с оптикой из кварца, пропускающего ультрафиолетовые лучи.

Поляризационная микроскопия. В основе метода поляризационной микроскопии лежит способность различных компонентов клеток и тканей к преломлению поляризованного света. Некоторые клеточные структуры, например нити веретена деления, миофибриллы, реснички мерцательного эпителия и др., характеризуются определенной ориентацией молекул и обладают свойством двойного лучепреломления. Это так называемые анизотропные структуры.

Исследование анизотропных структур производится с помощью поляризационного микроскопа. От обычного биологического микроскопа он отличается тем, что перед конденсором помещается поляризатор, а за препаратом и объективом помещены компенсатор и анализатор, позволяющие детально исследовать двойное лучепреломление в рассматриваемом объекте. При этом в клетках обычно наблюдаются светлые или окрашенные структуры, вид которых зависит от положения препарата по отношению к плоскости поляризации и от величины двойного лучепреломления.

Поляризационный микроскоп дает возможность определить ориентировку частиц в клетках и других структурах, четко видеть структуры с двойным лучепреломлением, а при соответствующей обработке препаратов можно сделать наблюдения над молекулярной организацией той или иной части клетки.

Микроскопия в темном поле. Изучение препаратов в темном ноле осуществляется с помощью особого конденсора. От обычного конденсора светлого поля темнопольный конденсор отличается тем, что пропускает только очень косые краевые лучи источника света. Поскольку краевые лучи имеют сильный наклон, они не попадают в объектив, и поле зрения микроскопа оказывается темным, а объект, освещенный рассеянным светом, кажется светлым.

На препаратах клеток обычно содержатся структуры разной оптической плотности. На общем темном фоне эти структуры четко видны благодаря их различному свечению, а светятся Они потому, что рассеивают попадающие на них лучи света (эффект Тиндаля).

В темном поле можно наблюдать разнообразные живые клетки.

Ультрафиолетовая микроскопия. Ультрафиолетовые (УФ) лучи глазом человека не воспринимаются, в силу чего непосредственное изучение клеток и их структур в них невозможно. Для целей исследования препаратов клеток в УФ лучах Е.М. Брумберг (1939) сконструировал оригинальный ультрафиолетовый микроскоп МУФ-1, и в настоящее время имеется несколько моделей этого микроскопа. Метод Е.М. Брумберга основан на том, что многие вещества, входящие в состав клеток, имеют характерные спектры поглощения УФ лучей.

При исследовании различных веществ в живых или фиксированных неокрашенных клетках и тканях в таком микроскопе препарат фотографируется трижды (на одной и той же пластинке) в лучах трех различных зон УФ спектра.

Для фотографирования длины УФ волн подбираются так, чтобы в каждой зоне находилась полоса поглощения какого-либо одного вещества, не поглощающего лучи в двух других зонах. Поэтому вещества, которые видны на фотографиях, оказываются разными на всех снимках.

Затем полученные снимки помещают в особый прибор, называемый хромоскопом. Один снимок рассматривают в синих, второй - в зеленых, а третий - в красных лучах.

Получаются три цветных изображения, которые в хромоскопе сводятся в одно, и на этом конечном изображении объекта различные вещества клетки оказываются окрашенными в разные цвета.

Но ультрафиолетовый микроскоп позволяет, не только фотографировать, а и производить визуальные наблюдения над тканями и клетками, для чего в нем имеется специальный флуоресцирующий экран.

С помощью этого микроскопа удаётся рассмотреть частички несколько меньших размеров, чем в обычный биологический микроскоп, благодаря тому что УФ лучи обладают значительно более короткой длиной волны, чем обычные световые лучи.

Поэтому разрешающая способность УФ микроскопа равна 0,11 мк, в то время как разрешающая способность биологического микроскопа при использовании обычного освещения равна 0,2-0,3 мк.

При помощи ультрафиолетового микроскопа проводится количественное определение поглощения УФ лучей нуклеиновыми кислотами и другими веществами, содержащимися в клетках, т. е. определяется количество этих веществ в одной клетке.

Микрофотографирование. Микрофотографирование разнообразных микроскопических препаратов проводят для того, чтобы получить их увеличенное изображение -- микрофотографию. На микрофотографиях удобно изучать отдельные структуры клеток и других объектов; микрофотографии представляют документы, очень точно отражающие все детали строения микроскопического препарата.

Фотографирование микроскопических препаратов производится с помощью специальных микрофотоустановок или микрофотонасадочных камер. Последние получили широкое распространение и пригодны для микрофотографирования с биологическим и любым другим микроскопом. Микрофотонасадочная камера - это фотоаппарат, у которого объектив удален и заменен микроскопом.

Оптическая система микроскопа выполняет роль объектива этого фотоаппарата. Имеется несколько типов микрофотонасадок. Очень удобны из них микрофотонасадки типа МФН-8.

Существует также и специальный биологический микроскоп МБИ-6 с постоянной фотокамерой. МБИ-6 позволяет производить обычное визуальное исследование препаратов и их фотографирование в проходящем и отраженном свете, в светлом и темном полях зрения, с фазовым контрастом и в поляризованном свете.

Большую роль в изучении процессов жизнедеятельности клетки играет микрокиносъемка. Для исследования деталей важнейших процессов, протекающих в клетке, таких, как деление, фагоцитоз, течения цитоплазмы и др., применяют цейтраферное устройство.

С помощью этого устройства можно производить либо ускоренную съемку, применяемую обычно при быстро протекающих процессах, либо замедленную съемку тех изменений в клетке, для которых характерно медленное течение.

Микрокиносъемка представляет собой не только метод, позволяющий детально исследовать разнообразные структуры и процессы в живой клетке, но и метод документации этих процессов и всех тех изменений, которые с ними связаны.

<== предыдущая лекция | следующая лекция ==>
Функциональные объекты | Лекция 14. Методы исследования живых клеток
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 2154; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.