Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производная сложной и обратной функций и функции, заданной параметрически

Арифметические действия над производными

Производная функции в точке, ее геометрический и механический смысл

 

На рисунке изображены график функции точки секущая, касательная к кривой углы Пусть функция определена в точке и некоторой ее окрестности. Сместимся из точки в точку Величина называется приращением аргумента в точке а величина = называется приращением функции в точке (соответствующим приращению аргумента).

Определение 4. Если существует (конечный) предел

 

то его называют производной функции в точке и обозначают При этом функцию называют дифференцируемой в точке а

величину называют дифференциалом функции в точке

Выясним, в чем состоит геометрический смысл производной и дифференциала. Так как и так как то т.е.

т.е. производная функции в точке является угловым коэффициентом касательной к кривой с точкой касания

С другой стороны, из рисунка видно,что поэтому

дифференциал равен приращению касательной к графику функции при переходе аргумента из точки в точку

Из геометрического смысла производной легко получить уравнения касательной и нормали к кривой в точке

(касательная), (нормаль).

Выясним теперь механический смысл производной. Если путь пройденный материальной точкой за время от момента до момента то средняя скорость материальной точки, а величина

мгновенная скорость материальной точки в момент

Нетрудно показать, что

любая дифференцируемая в точке функция непрерывна в точке (обратное, вообще говоря, неверно; пример: непрерывна в точке но не существует).

Теорема 4. Если функции дифференцируемы в точке то в этой точке дифференцируемы и функции причем

(в рассматриваемой точке).

Если, кроме того, то в точке дифференцируемо и частное, причем

Доказательство проведем для производной суммы. Имеем поэтому

Теорема доказана.

 

Приведем без доказательства некоторые утверждения, связанные с производными.

Теорема 5. Пусть сложная функция определена в точке и некоторой ее окрестност и пусть выполнены условия:

1. функция дифференцируема в точке

2. функция дифференцируема в соответствующей точке

Тогда сложная функция дифференцирума в точке и имеет место равенство

 

Напомним следующие понятия:

а) Функция называется обратимой на множестве если

 

При этом функция сопоставляющая каждому элемент такой, что называется функцией, обратной к

Очевидно, имеют место тождества:

 

Заметим, что все строго монотонные на множестве функции обратимы на

б) Говорят, что функция задана параметрически уравнениями если функция обратима на отрезке В этом случае где функция, обратная к функции

Теорема 6. Пусть функцияв некоторой окрестности точки имеет обратную функцию Пусть, кроме того, функция дифференцируема в точке и Тогда обратная функция дифференцируема в соответствующей точке и имеет место равенство

Теорема 7. Пусть функция задана параметрически уравнениями и пусть выполнены условия:

1) функции дифференцируемы в фиксированной точке

2) в рассматриваемой точке

Тогда функция дифференцируема в точке и имеет место равенство

<== предыдущая лекция | следующая лекция ==>
Непрерывность функции в точке. Односторонние пределы | Формула Тейлора с остаточными членами в форме Пеано и Лагранжа
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 334; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.