Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция № 4. Микроэкономика




Кольцо

Звезда

Общая шина

При шинной топологии канал передачи информации представляется в форме коммуникационного пути, доступного для всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование сети не зависит от состояния отдельной рабочей станции.

Концепция топологии сети в виде звезды пришла от старых больших ЭВМ, где головная машина представляла активный узел обработки данных, т.е. получала и обрабатывала все данные с периферийных устройств. Вся информация между двумя периферийными рабочими местами в ЛВС проходит через центральный узел вычислительной сети, которым является файл-сервер.

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельные соединения довольно просты, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высоки, особенно когда центральный узел физически расположен не в центре топологической зоны. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные линии: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология «звезда» является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысока по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файл-сервера. Он может быть «узким местом» вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Однако файл-сервер может реализовать оптимальный механизм защиты от несанкционированного доступа к информации. Вся ЛВС может управляться из её «центра».

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если физически рабочие станции расположены далеко от кольца (например, вытянуты в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

_________________________________________________________________________________________________________

04 ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ

Глобальная компьютерная сеть (Wide Area Network, WAN) охватывает значительную географическую область, часто целую страну или даже континент. Она объединяет компьютеры, предназначенные для выполнения программ пользователя (то есть приложений). Следуя традиционной терминологии, будем называть эти компьютеры х о стами. Хосты соединяются коммуникационными подсетями, называемыми для краткости просто подсетями. Хосты обычно являются собственностью клиентов (то есть просто клиентскими компьютерами), в то время как коммуникационной подсетью чаще всего владеет и управляет телефонная компания или поставщик услуг Интернета.

Задачей подсети является передача сообщений от хоста к хосту, подобно тому как телефонная система переносит слова от говорящего слушающему. Таким образом, коммуникативный аспект сети (подсеть) отделён от прикладного аспекта (хостов), что значительно упрощает структуру сети.

В большинстве глобальных сетей подсеть состоит из двух раздельных компонентов: линий связи и переключающих элементов. Линии связи, также называемые каналами или магистралями, переносят данные от компьютера к компьютеру. Переключающие элементы являются специализированными компьютерами, используемыми для соединения трёх или более линий связи. Когда данные появляются на входной линии, переключающий элемент должен выбрать выходную линию – дальнейший маршрут этих данных. В прошлом для названия этих компьютеров не было стандартной терминологии. Сейчас их называют маршрутизаторами (router), однако по поводу терминологии в данном случае единого мнения нет.

Связь хостов и подсети в ЛВС

В модели, показанной на рисунке, каждый хост соединён с локальной сетью, в которой присутствует маршрутизатор, хотя в некоторых случаях хост может быть связан с маршрутизатором напрямую. Набор линий связи и маршрутизаторов (но не хостов) образует подсеть.

Следует также сделать замечание по поводу термина «подсеть» (subnet). Изначально его единственным значением являлся набор маршрутизаторов и линий связи, используемый для передачи пакета от одного хоста к другому. Однако спустя несколько лет этот термин приобрёл второй смысл, связанный с адресацией в сети. Таким образом, имеется некая двусмысленность, связанная с термином «подсеть». К сожалению, этому термину в его изначальном смысле нет никакой альтернативы, придётся использовать его в обоих смыслах. По контексту всегда будет ясно, что имеется в виду.

Большинство глобальных сетей содержат большое количество кабелей или телефонных линий, соединяющих пару маршрутизаторов. Если какие-либо два маршрутизатора не связаны линией связи напрямую, то они должны общаться при помощи других маршрутизаторов. Когда пакет посылается от одного маршрутизатора другому через несколько промежуточных маршрутизаторов, он получается каждым промежуточным маршрутизатором целиком, хранится на нём, пока требуемая линия связи не освободится, а затем пересылается дальше. Подсеть, работающая по такому принципу, называется подсетью с промежуточным хранением (store-and-forward) или подсетью с коммутацией пакетов (packetswitched).

Почти у всех глобальных сетей (кроме использующих спутники связи) есть подсети с промежуточным хранением. Небольшие пакеты фиксированного размера часто называют ячейками (cell). В общем случае, когда у процесса какого-нибудь хоста появляется сообщение, которое он собирается отправить процессу другого хоста, первым делом отправляющий хост разбивает последовательность на пакеты, каждый из которых имеет свой порядковый номер. Пакеты один за другим направляются в линию связи и по отдельности передаются по сети. Принимающий хост собирает пакеты в исходное сообщение и передаёт процессу. Продвижение потока пакетов наглядно показано на рисунке.

Поток пакетов от отправляющего процесса к принимающему

На рисунке видно, что все пакеты следуют по пути АСЕ, а не ABDE или ACDE. В некоторых сетях путь всех пакетов данного сообщения вообще является строго определенным. В других сетях путь пакетов может прокладываться независимо.

Решения о выборе маршрута принимается на локальном уровне. Когда пакет приходит на маршрутизатор А, именно последний решает, куда его перенаправить – на В или на С. Метод принятия решения называется алгоритмом маршрутизации. Их существует огромное множество.

Не все глобальные сети используют коммутацию пакетов. Второй возможностью соединить маршрутизаторы глобальной сети является радиосвязь с использованием спутников. Каждый маршрутизатор снабжается антенной, при помощи которой он может принимать и посылать сигнал. Все маршрутизаторы могут принимать сигналы со спутника, а в некоторых случаях они могут также слышать передачи соседних маршрутизаторов, передающих данные на спутник. Иногда все маршрутизаторы соединяются обычной двухточечной подсетью, и только некоторые из них снабжаются спутниковой антенной. Спутниковые сети являются широковещательными и наиболее полезны там, где требуется широковещание.

_________________________________________________________________________________________________________

05 ИНТЕРНЕТ. ИСТОРИЯ РАЗВИТИЯ

Как и множество других технологических изобретений, глобальные компьютерные сети вышли из недр исследовательских проектов сугубо военного назначения. Запуск в Советском Союзе первого искусственного спутника Земли в 1957 году ознаменовал начало технологического соревнования между СССР и США. В 1958 году для проведения и координации научно-исследовательской деятельности в военной области при Министерстве обороны США было выделено специальное Агентство Передовых Исследовательских Проектов (Advanced Research Projects Agency – ARPA). В его ведении, в частности, находились и работы по обеспечению безопасности связи и коммуникации в случае начала ядерной войны. Такая система передачи данных должна была обладать максимальной устойчивостью к повреждениям и быть способной функционировать даже при полном выведении из строя большинства своих звеньев.

В 1967 году для создания сети передачи данных было решено использовать разбросанные по всей стране компьютеры ARPA, соединив их обычными телефонными проводами. Работы по созданию первой глобальной компьютерной сети, получившей название ARPANet, велись быстрыми темпами и уже к 1968 году появились её узлы, первый из которых был построен в Калифорнийском университете в Лос-Анджелесе (University of California in Los-Angeles, UCLA), второй – в Стенфордском исследовательском институте (Stanford Research Institute, SRI). В сентябре 1969 года состоялась передача первого компьютерного сообщения между этими центрами, что фактически ознаменовало рождение сети ARPANet.

К декабрю 1969 г. ARPANet насчитывала 4 узла, в июле 1970 г. – восемь, а в сентябре 1971 г. уже 15 узлов. В 1971 году программистом Рэем Томлисоном (Ray Tomlison) разработана система электронной почты, в частности, в адресации впервые использован значок @ («коммерческая эт»). В 1974 году было открыто первое коммерческое приложение ARPANet – Telnet, обеспечивающее доступ к удаленным компьютерам в режиме терминала.

К 1977 году Сеть объединяла уже десятки научных и военных организаций, как в США, так и в Европе, а для связи использовались уже не только телефонные, но также спутниковые и радиоканалы. 1 января 1983 года было ознаменовано принятием единых Протоколов Обмена Данными – TCP/IP (Transfer Control Protocol / Internet Protocol). Выдающееся значение этих протоколов заключалось в том, что с их помощью разнородные сети получили возможность производить обмен данными друг с другом. Именно этот день фактически является днём рождения интернета, как сети, объединяющей глобальные компьютерные сети. Недаром одним из наиболее ёмких и точных определений интернета является «сеть сетей».

В 1986 году Национальным Фондом Науки США (The National Science Foundation – NSF) была запущена в эксплуатацию NSFNet, связавшая компьютерные центры по всем Соединенным Штатам с «суперкомпьютерами». NSFNet изначально базировалась на TCP/IP, то есть была открыта для включения новых сетей, но первоначально была доступна лишь для зарегистрированных пользователей, в основном, университетов. Вся военная часть выделилась в MILNet, которая отошла исключительно в ведение американских военных организаций. NSFNet являлась высокоскоростной компьютерной сетью, базирующейся на суперкомпьютерах, соединенных оптоволоконными кабелями, радио- и спутниковой связью. До 1995 года она составляла основу интернета в Соединенных Штатах – была «хребтом» (backbone) американской части глобальных компьютерных сетей (у других стран имелись собственные «хребты»). В 1996 году NSFNet была приватизирована, а научным организациям было предписано договариваться о доступе к информационным магистралям с коммерческими интернет-провайдерами. В академических кругах это решение было признано ошибочным, и практически с того же года стали вестись эксперименты по воссозданию некоммерческой сети научных и образовательных учреждений, под условным названием интернет-2.

До середины 1990 годов интернет был доступен относительно узкому академическому сообществу, а его наполнение не отличалось богатством и разнообразием. Обмен электронными письмами, общение в группах новостей по интересам с помощью текстовых сообщений, доступ к ограниченному числу серверов по Telnet и получение файлов по FTP (File Transfer Protocol – протокол передачи файлов) были уделом энтузиастов до 1991 года, когда появился Gopher, – приложение, впервые позволившее свободно перемещаться по глобальным сетям без предварительного знания адресов необходимых серверов.

Поначалу не привлекло особого внимания и объявление о разработке нового приложения – Всемирной паутины (World Wide Web – WWW), сделанного в 1991 году в Европейском центре ядерных исследований (European Center for Nuclear Research, CERN). Созданный специалистом CERN Тимом Бернерсом-Ли (Tim Berners-Lee) протокол передачи гипертекста (HyperText Transmission Protocol – HTTP) предназначался для обмена информацией среди физиков, трудившихся в удалённых друг от друга лабораториях. Однако в 1992-93 годах WWW ещё по-прежнему представлял собой черно-белый текстовой ресурс. Ситуация значительно изменилась в 1993 году, после того как в Национальном центре суперкомпьютерных приложений (National Center for Supercomputing Applications, NCSA) был создан первый графический интерфейс к World Wide Web – браузер Mosaic. Mosaic оказался настолько популярен, что один из разработчиков программы Марк Андриссен (Mark Andreessen) основал компанию Netscape, занявшуюся разработкой аналога Mosaic – браузера Netscape Navigator.

Повсеместное использование интернета широкими массами пользователей фактически началось в 1994 году с созданием нового браузера – Netscape Navigator. Его появление не только упростило доступ к информации Всемирной паутины, но, главное, позволило размещать в виртуальной Вселенной практически все виды данных. На смену текстовым черно-белым приложениям пришла многокрасочная среда, наполненная графикой, анимацией, аудио- и видеоданными. Такая среда сразу же привлекла большее число пользователей, что в свою очередь стимулировало ещё большее число организаций и частных граждан размещать в Сети свои данные. Получилась своеобразная замкнутая спираль, каждый последующий виток которой значительно превышает предшествующий.

Этот процесс продолжается и поныне, захватывая все новые и новые страны. Ещё в июле 2002 года Сеть насчитывала более 172 миллионов хостов (компьютеров, имеющих оригинальный IP-адрес), а число пользователей равнялось 689 миллионам человек, из более чем 170 стран мира, что составляло на тот момент 9% населения Земли. По данным компании Nua.com рубеж в 1 миллиард был преодолен в 2005 году.

В России, по данным фонда «Общественное мнение» (http://www.fom.ru) на весну 2012 года число пользователей интернета оценивалось в 70 миллионов человек. Это составляет 58% населения России в возрасте от 18 лет и старше. Больше всего увеличилась доля тех, кто пользуется интернетом ежедневно, – с 30% до 38%.Из данных ВЦИОМ следует, что основным способом выхода в интернет для российских пользователей остается стационарный компьютер – его используют для этого 78%, причем 49% – ежедневно. По данным Euromonitor International, проникновение интернета в России все ещё значительно ниже уровня западноевропейского – 49% по сравнению с 78% в среднем по Европе. Наибольшее количество пользователей (18%) сосредоточено в Москве, порядка 15% проживают в Северо-Западном регионе, 16% – в Приволжском, 17% – в Центральном (исключая Москву), 13%- - в Сибирском, 11% – в Южном, 5% – в Уральском и 4% – в Дальневосточном регионах.

Статистика пользователей интернета в мире на 31.12.2011
(по данным Miniwatts Marketing Group)

В перспективе аудитория и число обращений к интернету будут в значительной степени расширяться за счёт увеличения возможностей мобильных компьютерных устройств: ноутбуков, карманных персональных компьютеров, планшетов, сотовых телефонов. Динамичное развитие технологий мобильного и беспроводного доступа приводит к тому, что в мире возникает всё больше мест, находясь в которых, пользователи в состоянии без труда подключаться к Сети, в том числе и обращаться к корпоративным интранет-сервисам, фактически - локальным сетям своих учреждений.

Уже сегодня есть многочисленные примеры мобильного интернета. Так вся сеть ресторанов McDonalds в Японии уже оснащена оборудованием для доступа в Сеть. В аббатстве Gardens, расположенном на юго-востоке Англии, портами для подключения к интернету оборудованы все парковые скамейки. Крупнейшие производители пассажирских самолетов – американская компания Boeing и европейский консорциум Airbus снабжают свои авиалайнеры для дальних перелетов устройствами для доступа к интернету. Немецкая авиакомпания Lufthansa уже широко предоставляет пассажирам рейсов, курсирующим по Европе, Азии и Северной Америке, доступ к интернету непосредственно в воздухе.

Известная сеть отелей Mariott заключила с компанией Intel соглашение на предоставление всем постояльцам отелей в США доступа к интернету посредством технологии Wi-Fi. Такие точки беспроводного доступа, называемые «хот-спотами» есть, кстати, во всех трёх московских отелях этой сети. Доступ осуществляется за счёт беспроводных сетевых карт в ноутбуках или КПК постояльцев. Если ноутбук гостя не оснащен такой картой, – она выдаётся за небольшую плату на время пребывания в отеле. За счёт этой беспроводной технологии гости могут подключаться к интернету абсолютно из любого места в отеле.

С технической точки зрения, интернет сегодня представляет собой миллионы находящихся в разных частях планеты компьютеров, которые связаны друг с другом волоконно-оптическими, спутниковыми или телефонными каналами. У Сети нет единого центра и единой администрации. Общую координацию его деятельности осуществляют международные организации, членами которых являются наиболее авторитетные эксперты из разных стран. Так, например, Internet Research Task Force занимается проблемами развития семейства протоколов TCP/IP, Internet Engineering Task Force – проблемами новых стандартов и протоколов, Internet Corporation for Assigned Names and Numbers – распределением адресного пространства в глобальном масштабе. Ключевые вопросы, представляющие всеобщий интерес для пользователей интернет, вначале обсуждаются высококвалифицированными экспертами, а затем, в случае одобрения, принимаются сообща руководством наиболее авторитетных сетей. Остальные вправе присоединиться к новшествам или проигнорировать их, оказавшись, таким образом, в изоляции. Однако здравый смысл всегда берет верх, тем более, что нововведения приносят всем субъектам интернета ощутимую пользу и никогда не идут во вред системе в целом.

В основе передачи данных в глобальных сетях лежит технология коммутации пакетов. Каждый передаваемый файл разбивается на небольшие порции, которые помещаются в пакет, содержащий адреса как отправляющего, так и принимающего компьютера. Пакеты путешествуют по сети самостоятельно, что фактически исключает возможность их безвозвратной утраты (при потере одного пакета он может быть легко переслан повторно). Поскольку каждый пакетик пересылается независимо от других и вперемешку с тысячами подобных, по одному телефонному кабелю одновременно могут работать большое число пользователей, совершенно не замечая этого. Это, помимо прочего, обеспечивает и относительную дешевизну передачи данных по интернету. Например, стоимость посылки электронного письма ничтожна по сравнению со стоимостью пересылки по факсу сообщения равного объёма.

Глобальные компьютерные сети изначально разрабатывались таким образом, чтобы выход из строя их отдельных участков не приводил к полной остановке всей системы. По этой причине изначально была выбрана идеология, согласно которой все узлы Сети имели равные права относительно друг друга. Отсутствие «главных» компьютеров делает всю систему устойчивой, так как вывод из строя подобных центров мог бы привести к разрушению всей сети. Устойчивость работы достигается за счёт системы маршрутизации, которая лежит в основе управления потоками данных в глобальных сетях. Эта система в автоматизированном режиме регулирует пересылку потоков пакетов с компьютера на компьютер по указанным адресам. Её основными элементами являются маршрутизаторы, которые, располагаясь на узлах Сети, содержат постоянно актуализируемую информацию о текущем состоянии компьютеров, сетевого окружения и каналов связи. Опираясь на таблицы маршрутизации, потоки данных направляются к цели оптимальными на данный момент путями в обход временно поврежденных участков. Именно эта технология обеспечивает высокую устойчивость глобальной сети, в которой отдельные узлы и линии связи могут выйти из строя, но вся сеть при этом не теряет своей работоспособности, автоматически осуществляя доставку данных в обход поврежденных участков.

Каждая входящая в интернет сеть самостоятельно заботится о решении своих технологических, организационных и финансовых проблем. В их собственности или аренде находится всё необходимое для передачи данных: каналы связи, мощные сервера и маршрутизаторы, осуществляющие регулирование информационных потоков. Бюджет сетей формируется за счет платы, взимаемой с конечных пользователей, которыми являются как целые организации, так и отдельные граждане. Конечный пользователь, оформивший контракт с определённым поставщиком доступа в интернет (Internet Service Provider – ISP) в каждом случае соединяется только с местной сетью, предоставляемой провайдером. Всё остальное – дело аппаратного и программного обеспечения, обеспечивающего беспрепятственное путешествие по виртуальному миру: для клиента любые переходы от сети к сети становятся абсолютно прозрачными. Финансовые взаиморасчеты между самими сетями практически полностью повторяют отношения между почтовыми ведомствами разных стран: получая плату с одного клиента в одной стране, почтовые службы производят взаимные расчеты, исходя из объемов переданной друг другу корреспонденции.

1. Сущность рынка. Основные элементы рынка

2. Товар как экономическая категория. Стоимость и цена товара

3. Деньги. Законы денежного обращения

4. Теория спроса и предложения. Эластичность

5. Рыночное равновесие

6. Рынок как регулятор производства товаров

7. Теория поведения потребителя

8. Факторы производства

9. Издержки и доходы фирмы




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 425; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.