Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приемник электромагнитных волн Александра Степановича Попова




Вибратор Герца

Итак, индукционная катушка позволила возбуждать серии затухающих колебаний высокой частоты. Но как же излучить их в пространство в виде волн?

Генрих Герц полагал, как это и следует из уравнений Максвелла, что чем быстрее изменяются электрические и магнитные поля, тем эффективнее излучаются волны. Стремясь повысить частоту колебаний контура, Герц оставил в катушке контура всего один виток, а площадь пластин конденсатора уменьшил до предела. В результате получился вибратор, состоящий из двух стерженьков с искровым промежутком между ними.

Оказалось, что вибратор Герца эффективно излучает волны с длиной, равной удвоенной длине вибратора. Теперь-то мы знаем, что вибратор Герца представляет собой обычный полуволновый диполь. Посмотрите на любую крышу, и вы увидите телевизионные антенны, представляющие собой систему диполей.

Приемником колебаний служил другой диполь с очень близко расположенными шариками разрядника. Когда искра проскакивала в передающем диполе, крошечную искру можно было наблюдать и в приемном! Так экспериментально была осуществлена передача электромагнитных волн радиодиапазона на расстояние в несколько метров. Оказалось, что прием наиболее эффективен, когда приемный вибратор настроен в резонанс с передающим. Длины вибраторов при этом одинаковы.

Опыты Герца, выполненные в 1887-1888-х годах, вызвали огромный интерес у физиков и инженеров. Многие стали их повторять, видоизменять и совершенствовать. П. Н. Лебедев, замечательный русский физик, открывший, в частности, давление света, сконструировал вибратор на длины волн до трех сантиметров (в опытах Герца длина волны составляла около трех метров).

Это были совсем крошечные вибраторы! Были исследованы явления отражения и преломления электромагнитных волн на границе раздела различных сред. Наблюдали отражение волн от металлического листа, преломление волн призмой, изготовленной из диэлектрика.

Значительно более мощные электромагнитные колебания, но меньшей частоты позволил получить трансформатор Никола Тесла, вторичная обмотка которого была настроена в резонанс с первичной. Поскольку конденсатор во вторичной обмотке отсутствовал, число витков ее было значительно больше, чем в первичной, что обеспечивало на вибраторе напряжения до миллиона вольт!

Наконец мы вплотную подошли в нашем рассказе к моменту изобретения радио. Разумеется, вы знаете, кто это сделал. Наш соотечественник, преподаватель физики минных офицерских классов в Кронштадте Александр Степанович Попов.

Ему удалось сконструировать приемник электромагнитных волн, обладающий достаточной для практических целей чувствительностью. Вспомним приемный вибратор Герца. Для того чтобы в его разряднике проскочила искра, необходимо, чтобы электромагнитная волна развила в нем напряжение в несколько сотен вольт. А это значит, что напряженность поля электромагнитной волны должна быть также около сотен вольт на метр (ведь длина вибратора была близка к 1 м).

Напряжение в вибраторе рассчитать очень просто: надо напряженность электрического поля волны помножить на эффективную (действующую) длину вибратора. Обычно она составляет приблизительно 0,7 геометрической длины вибратора. Столь сильные поля создают лишь близкие разряды молний.

Однажды я неторопливо отсоединял от своего любительского передатчика фидер антенны, любуясь в окно красивой грозовой тучей. В туче сверкнула молния, и в тот же миг между выводами антенны и заземления, находившимися у меня в руках, проскочила с сухим треском голубоватая искра длиной в несколько сантиметров! Хорошо, что выводы были с толстой изоляцией.

Дрожащими руками я все-таки соединил эти выводы, заземлив антенну, и стал вспоминать Г. В. Рихмана, сподвижника М. В. Ломоносова, погибшего во время грозы при опытах с металлическим стержнем на крыше (впоследствии этот стержень, только заземленный, стали называть громоотводом). С тех пор я всегда отключаю антенну задолго до приближения грозы, хотя все конструкции моих антенн имеют надежную грозозащиту.

Но вернемся к приемнику А. С. Попова. Вместо искрового промежутка в приемном вибраторе Попов использовал когерер, прибор, изобретенный незадолго до этого французом Э. Бранли.

Когерер представлял собой стеклянную трубку с двумя выводами, между которыми были насыпаны железные опилки. Из-за тончайшего слоя окиси на поверхности опилок сопротивление когерера велико, но лишь до тех пор, пока на его выводах отсутствует напряжение, безразлично, переменного или постоянного тока.

Как только прикладывается напряжение, наведенное электромагнитной волной, сопротивление когерера резко падает. Это объясняется действием мельчайших искр, пробивающих слой окиси между опилками и как бы сваривающих опилки между собой. Чтобы разрушить образовавшиеся мостики для электрического тока, когерер достаточно было встряхнуть.

К когереру подводились колебания, наведенные принимаемой волной в приемном вибраторе. Следующий важный элемент приемника А. С. Попова - релейный усилитель постоянного тока. Относительно слабый ток через когерер приводил в действие чувствительное реле, контакты которого замыкали цепь электрического звонка. Устройство звонка во многом было аналогично устройству катушки Румкорфа, отсутствовала лишь вторичная обмотка.

Молоточек звонка в приемнике Попова ударял не только по колокольчику, но, отскочив, еще и по когереру. Таким образом, когерер автоматически встряхивался после приема каждого электромагнитного импульса и был готов к приему следующего.

Еще одно важное усовершенствование приемника Попова заключалось в использовании приемной антенны. Ведь чем длиннее провод антенны, тем большее напряжение наводит в нем электромагнитная волна.

Проволочная антенна, протянутая к ближайшему дереву или на крышу дома, представляет собой как бы одну половину вибратора Герца. Но нужна и вторая половинка-противовес. Роль противовеса с успехом выполняет заземление. Токи, которые должны были бы течь в противовес, могут просто растекаться по поверхности и в толще земли, ведь обычная, достаточно влажная почва неплохо проводит электрический ток.

Наконец приемник был готов. Но еще не было передатчика! Можно было принимать лишь радиосигналы естественного происхождения. Они генерируются при каждом разряде молнии, ведь молния представляет собой гигантскую искру, а канал ионизированного газа, образующийся при разряде, прекрасно проводит электрический ток и служит передающим вибратором.

А. С. Попов назвал свой приемник грозоотметчиком. С подключенной наружной антенной удавалось регистрировать грозы на расстояниях до 30 км. Каждый разряд молнии сопровождался коротким треньканьем звонка в приемнике!

Это устройство А. С. Попов продемонстрировал 7 мая 1895 года на заседании Русского физико-химического общества. Начиная с 1945 года ежегодно 7 мая отмечается как день рождения радио.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 828; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.