Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Графическая подсистема




Характеристики шины AGP

 

Год создания: 1996

Разрядность шины данных: 32;

Частота шины: 66 МГц;

Раздельные линии адреса и данных (в отличие от PCI);

Конвейеризация операций обращения к памяти;

Максимальная пропускная способность: 532 МБ/с;

Спецификации AGP 2x, AGP 4x, AGP 8x – возможность пересылать несколько блоков данных за один такт шины. Максимальная пропускная способность AGP 8x: 2 ГБ/с;

 

Важной особенностью шины AGP является конвейеризация операций обращения к памяти. В обычных неконвейерных шинах (например, в шине PCI) при выполнении запроса чтения/записи ячеек оперативной памяти шина простаивает, ожидая завершения этой операции. Конвейерный доступ AGP позволяет в это время передавать следующие запросы, а потом получить ответы на эти запросы в виде непрерывного потока данных.

Шина AGP может объединять в один пакет до 256 запросов чтения/записи ячеек оперативной памяти и получить ответы на них, объединенные в пакет длиной до 256 32-разрядных слов данных.

 

 

AGP предназначалась для того, чтобы графические карты могли хранить необходимые им данные (текстуры) не только в своей дорогой локальной памяти, установленной на борту, но и в дешевой системной памяти компьютера. При этом они (карты) могли иметь меньший объем этой самой локальной памяти и, соответственно, дешевле стоить.

Ускоренный графический порт (AGP) -- это расширение шины PCI, чье назначение -- обработка больших массивов данных 3D графики. Intel разрабатывала AGP для решения двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer), который содержит информацию, относящуюся к представлению глубины изображения.

Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.

Если определить кратко, что такое AGP, то это - прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени.

 

Через AGP можно подключить только один тип устройств - это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.

 

Скорость, с которой мы получаем информацию на наши экраны, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

 

- разрешение вашего монитора

- количество цветов

- частота, с которой происходит обновление экрана

 

Современная видеокарта – это, по сути, второй самостоятельный компьютер внутри персонального компьютера. Причем, когда пользователь играет в 3-D игру, процессор видеокарты фактически выполняет большую часть работы, а центральный процессор отступает на второй план. Более мощный графический процессор создает более реалистическое изображение.

 

Для увеличения производительности графической подсистемы настолько, насколько это возможно, приходится снижать до минимума все препятствия на этом пути. Графический контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.

В принципе, для работы современных офисных приложений и просмотра видеофильмов вполне хватает 8Мбайт видеопамяти для разрешения 800х600 или 16 Мбайт для разрешения 1024х768. Вся остальная память, свыше этого, которая имеется сегодня в современных видеоадаптерах, тратится на сторонние нужды, в частности, для поддержки экранной графики операционной системы Windows (особенно в Windows Vista).

Использование 64, 128, 256 и 512 МБайт видеопамяти связано, в первую очередь, с интересами «игроманов». Следует сказать, что стремительное увеличение объема видеопамяти в настоящее время не связано с таким же прогрессом повышения разрешения изображения на экране. Практически уже достигнут потолок для традиционных систем отображения видеоинформации. Основная же причина все большего наращивания оперативной памяти видеоадаптера состоит в том, что на плате видеоадаптера теперь находится видеопроцессор, который может самостоятельно, по управляющим командам центрального процессора, строить объемные изображения (они же -3D), а это требует необычайно много ресурсов для хранения промежуточных результатов вычислений и образцов текстур, которыми заливаются условные плоскости моделируемых фигур.

Однако, даже для офисных приложений, сегодня, если в операционной системе Windows используется интерфейс DirectX 9 или 10, объем памяти видеокарты долэен быть не менее 128 МБайт.

Первоначально, видеокарты строились по следующим принципам. Все, что записывается центральным процессором в видеопамять, по строго определенным алгоритмам преобразуется в аналоговый видеосигнал, который подается на монитор. Таким образом, центральному процессору необходимо самому рассчитать параметры всех точек, которые должны быть в данный момент отражены на экране, и загрузить все данные в видеопамять. Любое изменение на экране, даже если это след мыши, это результат работы центрального процессора. Соответственно, чем больше используемое разрешение и количество цветов, тем больше процессор затрачивает времени на расчет всех точек формируемого растра.

Так как персональный компьютер с течением времени стал неразрывно связан с графическим интерфейсом Windows, и различными трехмерными играми, то разработчики «железа» предприняли ряд шагов по совершенствованию стандартной видеокарты, чтобы избавить центральный процессор от лишней работы по прорисовке элементарных изображений. Подобные устройства получили название графических ускорителей, или иначе графических акселераторов (они же видео- или графические процессоры).

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 911; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.