Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Бернулли

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Можно ли предвидеть, какова примерно будет относительная частота появлений события? На этот вопрос дал положительный ответ Яков Бернулли (1713 год).

Теорема Бернулли. Если в каждом из независимых испытаний вероятность появления события постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если - сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

.

Доказательство. Пусть числа появлений события в испытаниях. Каждая из величин может принять лишь два значения: 1 (событие наступило) с вероятностью и 0 (событие не появилось) с вероятностью .

Случайные величины попарно независимы, т.к. испытания независимы. Дисперсия любой величины , равна произведению так как , то произведение не превышает и, следовательно, дисперсии всех случайных величин ограничены числом , т.е. . Следовательно, к случайным величинам можно применить теорему Чебышева (частный случай).

При этом будем иметь

.

Принимая во внимание, что математическое ожидание каждой из величин (т.е. математическое ожидание числа появлений события в одном испытании) равно вероятности наступления события, получим

.

Покажем, что дробь

равна относительной частоте появлений события в испытаниях. Каждая из величин при появлении события в соответствующем испытании принимает значение, равное единице; следовательно, сумма равна числу появлений события в испытаниях, значит

Учитывая это равенство, получим

.

Теорема Бернулли утверждает, что при относительная частота при достаточно большом числе испытаний обладает свойством устойчивости и оправдывает статистическое определение вероятности.

Коротко теорему Бернулли записывают так:

при (закон больших чисел).

 

Глава 10. Функция распределения вероятностей случайной величины

<== предыдущая лекция | следующая лекция ==>
Значение теоремы Чебышева для практики | Определение функции распределения
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1800; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.