Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Часть 3. Решение обыкновенных дифференциальных уравнений в Mathcad




Часть 3. Решение обыкновенных дифференциальных уравнений в Mathcad

Ряд Фурье на произвольном отрезке

Часть 2. Разложение функций в ряд Фурье

Действия с комплексными числами

Часть 1. Вычисления с комплексными числами в Mathcad

Лекция № 5

Тема: «Комплексные переменные. Разложение функций в ряд Фурье. Решение дифференциальных уравнений»

В Mathcad определена мнимая единица i: и, следовательно, определены комплексные числа и операции с ними.

Z=a+bi – алгебраическая форма записи комплексного числа.

a – действительная часть, b – мнимая часть

- экспоненциальная (показательная) форма записи комплексного числа,

А – модуль, φ – аргумент (фаза)

- тригонометрическая форма записи комплексного числа.

Связь величин: a=A cos φ b=A sin φ

Z1=a1+j·b1, Z2=a2+j·b2

a) Сложение (вычитание) Z3=Z1±Z2=(a1±a2)+j·(b1±b2)

б) Умножение c·Z1=a·c+j·b·c

Z3=Z1·Z2=(a1·a2-b1·b2)+j·(a1·b2+a2·b1)=A1A2ej(φ1+φ2)

в) Деление

г) Возведение в степень n (натуральную)

д) Извлечение корня:, где k =0,1,2…n-1

!!!Машина принимает только радианы!!! радиан=градус градус=радиан

Примеры:

 

 

Функция f(x) абсолютно интегрируема на отрезке [-p;p], если существует интеграл. Каждой абсолютно интегрируемой на отрезке [-p;p] функции f(x) можно поставить в соответствие её тригонометрический ряд Фурье:

Коэффициенты тригонометрического ряда Фурье называют коэффициентами Фурье и вычисляют по формулам Эйлера – Фурье:,

Обозначим n – ю частичную сумму ряда Фурье кусочно – гладкой на отрезке [-p;p] функции f(x). Среднеквадратичное отклонение определяется по формуле:

Для любой ограниченной интегрируемой на [-p;p] функции f(x) частичная сумма её ряда Фурье является тригонометрическим многочленом наилучшего приближения n-ой степени.

Пример:

 

 

На графиках видно, как сходятся частичные суммы ряда Фурье. В окрестностях точек непрерывности функции f(x) разность между значением функции в точке х и значением частичной суммы ряда в этой точке стремится к нулю при n®¥, что полностью соответствует теории, поскольку в этом случае. Видно также, что разность стремится к нулю тем скорее, чем дальше от точек разрыва функции расположена точка х.

Пример:

 

Для кусочно – гладкой функции на отрезке [-L;L] функции f(x) задача о разложении в ряд Фурье на отрезке [-L;L] линейной заменой сводится к задаче о разложении функции на отрезке [-p;p]:

где,

 

Рассмотрим упрощения в рядах Фурье при различных условиях симметрии:

формула (1) формула (2)

Условия симметрии Упрощения an bn
f(t)=f(–t) Содержатся только косинусы (1)  
f(t)= – f(–t) Содержатся только синусы   (2)
f(t)=f(t) Для четных функций (1) (2)
Для нечетных функций    
f(t)= –f(t) Для четных функций    
Для нечетных функций (1) (2)

 


Пусть необходимо найти решение уравнения

(1)

с начальным условием. Такая задача называется задачей Коши. Разложим искомую функцию в ряд вблизи точки и ограничимся первыми двумя членами разложения. Учтя уравнение (1) и обозначив, получаем Эту формулу можно применять многократно, находя значения функции во все новых и новых точках.

(2)

Такой метод решения обыкновенных дифференциальных уравнений называется методом Эйлера. Геометрически метод Эйлера означает, что на каждом шаге мы аппроксимируем решение (интегральную кривую) отрезком касательной, проведенной к графику решения в начале интервала. Точность метода невелика и имеет порядок h. Говорят, что метод Эйлера – метод первого порядка, то есть его точность растет линейно с уменьшением шага h.

Существуют различные модификации метода Эйлера, позволяющие увеличить его точность. Все они основаны на том, что производную, вычисленную в начале интервала, заменяют на среднее значение производной на данном интервале.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 586; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.