Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные типы печатающих устройств

 

Рис. 7.3. Классификация печатающих устройств

 

Тип печатающего устройства (его наименование) определяется рядом классификационныx признаков. Наибольшее распространение в профессиональных ПЭВМ получили малогабаритные знакосинтезирующие ударные печатающие устройства, а также безударные печатающие устройства, использующие чернильно-струйный, термоконтактный, лазерный и другие способы печати.

Печатающие устройства ударного действия. Такие печатающие устройства используют механизмы печати с ударным способом записи символов на носителе с помощью красящего элемента (ленты). В процессе оттиска ударные элементы (иглы, молоточки) или литероноситель механически перемещаются. К достоинствам этих печатающих устройств можно отнести: возможность получения одновременно с оригиналом нескольких копий, использование обычных сортов бумаги, умеренную стоимость. В качестве недостатков отметим: сложность изготовления механических и электромеханических деталей и узлов, повышенный уровень шума, относительноневысокую надежность вследствие значительного количества движущихся деталей и узлов. В знакосинтезирующих ударных печатающих устройствах изображение символов формируется путем сочетания отдельных элементов (точек, отрезков, линий и т. п.). Все поле печатаемого символа разбивается на отдельные элементы в виде матрицы, называемой матрицей разложения. Контуры символа составляются из соответствующих элементов этой матрицы и по внешнему виду напоминают мозаику. Поэтому знакосинтезирующие печатающие устройства часто называют также матричными или мозаичными. Печатающая головка в матричном печатающем устройстве содержит набор вертикально расположенных игольчатых печатающих элементов, срабатывающих независимо друг от друга при включении соответствующих управляющих электромагнитов (рис. 7.4).

 

 
     
Рис. 7.4. Принцип действия матричного знакосинтезирующего устройства: 1 — красящая лента; 2 —.игольчатый печатающий элемент; 3 — пружина; 4 — электромагнит; 5 — корпус печатающей головки     Рис. 7.5. Принцип действия знакопечатающего ударного печатающего устройства с лепестковым литероносителем типа «ромашка»: 1 — боек; 2 — стальной диск с «лепестками»; 3 — крышка; 4 — электромагнитный привод  

 

Различают матричные ударные печатающие устройства последовательного (посимвольные) и параллельного (построчные) типа. В устройствах последовательного типа печатающая головка скользит по направляющим параллельно красящей ленте и последовательно, колонка за колонкой, формирует соответствующий символ. Иглы прижимают красящую ленту к бумаге и формируют необходимую конфигурацию символа. В некоторых случаях вместо красящей ленты используется специальная бумага с термочувствительным покрытием, которая темнеет в тех местах, где его касаются иглы. В матричных печатающих устройствах последовательного типа наибольшее распространение получили 9-игольчатые печатающие головки, перемещаемые по длине печатаемой строки. Однако для получения высококачественной печати и высоких скоростей печати часто применяются наборы с большим количеством печатающих игл, например 12, 18 или 24.

В матричных печатающих устройствах параллельного типа элементы (иглы) печатающей головки расположены по всей длине строки. Они позволяют параллельно печатать символы всей строки, поэтому их называют растровыми. Несмотря на высокую скорость печати (до 1000 строк в минуту), растровые печатающие устройства имеют большие по сравнению с последовательными устройствами габаритные размеры, массу, уровень шума, стоимость и находят в ПЭВМ ограниченное применение.

Качество печати зависит от размера матрицы разложения и повышается с увеличением количества точек в матрице (возможно частичное перекрытие печатаемых точек). Наиболее часто применяют матрицы следующих размеров: 9х7, 9х9, 11х9 точек — для печати обычного качества; 18х18 точек — для печати повышенного качества; 35х16, 60х18 и более точек — для печати высокого качества. Сложные модели матричных печатающих устройств дают очень высокое качество печати, практически неотличимое от качества печати пишущей машинки. Для повышения качества используется также многопроходная печать в прямом и (или) обратном направлениях. Поскольку в матричных знакосинтезирующвх ударных печатающих устройствах отсутствует постоянный литероноситель, то его функции выполняет электронный знакогенератор. Количество и номенклатура печатаемых символов определяются емкостью знакогенератора. Постоянный комплект печатаемых знаков (различных национальных наборов, шрифтов, графических и других символов) — постоянный знакогенератор — записывается в ПЗУ блока управления печатью. Современные матричные, печатающие устройства оснащаются загружаемыми из ПЭВМ знакогенераторами, куда пользователь может записать необходимые ему знаки. При этом в матричном печатающем устройстве обеспечивается прямая адресация к ударным элементам печатающей головки.

Матричные знакосинтезирующие устройства, помимо вывода алфавитно-цифровой информации, как правило, могут осуществлять и вывод графической информации. Поэлементные описания графических изображений хранятся в ОЗУ блока управления печатью.

Широкое распространение в последние годы цветных дисплеев привело к ускоренной разработке и внедрению многоцветных матричных ударных печатающих устройств. Обычно используется красящая лента с четырьмя красящими дорожками: черной и трех основных цветов — голубого, желтого и красного. Применяются два основных принципа печати. В первом случае за один горизонтальный проход печатающей головки осуществляется печать только одним цветом, а затем повторные проходы другими цветами. Во втором за счет перемещения красящей ленты в процессе одного прохода печатающей головки печатаются все требуемые цвета. Все это требует усложнения печатающего устройства, а, следовательно, повышает его стоимость.

Таким образом, знакосинтезирующие ударные печатающие устройства последовательного типа характеризуются: небольшой потребляемой мощностью, небольшими габаритными размерами, возможностями изменения в широких пределах комплекта используемых символов и вывода графической информации, умеренной стоимостью. При этом, однако, скорость печати' сравнительно невысокая.

Знакопечатающие ударные печатающие устройства с лепестковым литероносителем типа «ромашка» обеспечивают по сравнению с знакосинтезирующими более высокое качество печати и более высокую надежность, применяются обычно для вывода текстовой информация. Изображение символов в них формируется зиакообразующим элементом (литерой), имеющим изображение символа. В состав печатающего механизма такого устройства входят (рис. 7.5): тонкий стальной диск со многими лепестками («ромашка»), на каждом из которых расположены рельефные литеры (буквы, цифры и др.); ударный рычаг (молоточек) с электромагнитом, который может прижать к бумаге через красящую ленту необходимую литеру, т. е. отпечатать тот или иной символ; электродвигатель, вращающий «ромашку» и подводящий перед оттиском необходимый лепесток к нужному ударному рычагу.

Типичное количество используемых лепестков — 50... 100. Из-за ограниченного набора печатаемых символов, определяемых литероносителем, при необходимости другого набора символов требуется смена печатающей головки. Скорость печати также невысока (20...80 знак/с). Эти обстоятельства и обусловили вытеснение лепестковых ударных печатающих устройств в ПЭВМ знакосинтезирующими.

Как знакосинтезирующие, так и знакопечатающие устройства имеют принципиальные недостатки: близкое к предельным значениям быстродействие, высокий уровень шума, сложность, недостаточную надежность. Поэтому ведется интенсивная разработка безударных печатающих устройств, свободных от этих недостатков.

В печатающих устройствах безударного действия используются бесконтактные способы печати или способы, при которых контакт регистрирующего элемента и бумажного носителя незначителен. Как правило, для безударных печатающих устройств требуется специальная бумага или красконоситель, они не позволяют получать копий документа. В данных устройствах знаки формируются за счет изменения свойств вещества на носителе под воздействием термического, химического, электрического, электромагнитного, светового или другого воздействия либо за счет нанесения регистрирующего вещества струйным или другим способом.

Безударные чернильно-струйные печатающие устройства характеризуются пониженным уровнем шума, высокой скоростью печати (до 200 знак/с или до 1 стр/мин), высокой разрешающей способностью (до 200 точек/см) и качеством печати за счет преобразования точечного изображения на бумаге в более однородное (вследствие текучести чернил), возможностью вывода произвольных графических изображений, а также многоцветной печати.

Регистрирующий орган — печатающая головка (рис. 7.6) — содержит несколько (обычно 12) капсул-эмиттеров (инъекторов), имеющих тонкие сопла с диаметром отверстия 0,01...0,1 мм. Внутри капсулы создается избыточное давление, и под действием вибрации (волнового импульса) регистрирующий орган производит дозирование и выброс струи чернил через сопло по направлению к бумажному носителю. Капельки чернил заряжаются от источника высокого напряжения и под действием ускоряющего электрического тюря направляются к валику, подающему бумагу и являющемуся одним из электродов. Входной сигнал модулирует поток капель аналогично модуляции электронного луча в ЭЛТ. Малый диаметр капель (0,03...0,2 мм) я высокая частота их генерации обеспечивают высокие разрешающую способность и скорость печати. Управление перемещением струи чернил по бумаге осуществляется с помощью отклоняющих пластин. В качестве регистрирующей красящей жидкости (чернил) используются растворы органических красителей, обладающие высоким поверхностным натяжением, высокой электризуемостью и хорошей впитываемостью в бумагу.

Имеются два способа подачи капель на бумагу. Первый — непрерывный способ, кота из сопла вытекает непрерывная струя капель, проходящая через управляющую электростатическую систему и попадающая либо на бумагу, либо в специальный сборник

При втором способе (ждущем) капсулы с красящим веществом выдают струю чернил лишь во время формирования необходимого символа

 

 

Рис. 7.6. Принцип действия чернильно-струйного печатающего устройства:

1 — валик перемещения бумаги; 2 — бумага; 3 — отклоняющие пластины; 4 — фокусирующий электрод; 5 — блок управления; 6 — сопло; 7 — пьезоэлектрический кристалл; в — ультразвуковой генератор; 9 — насос; 10 — резервуар для чернил; сборник отработанных чернил; 12 — сформированный символ

 

 

 

Рис. 7.7. Цветное чернильно-струйное печатающее устройство:

1 — кассета с тремя видами чернил; 2 — резервуар для остатков чернил;
3 — приемник чернил; 4 - игольчатые регуляторы; 5 — отделитель пузырьков;
б — шланговый насос для чернил; 7 — возврат отходов чернил; 8 — блок выключателя очистки; 9 — центральный процессор; 10 — привод управления чернильно-струйным механизмом; 11 — вторичный резервуар; 12 — переходной резервуар;
13 — блок управления приводом; 14 — двигатель грязесьемника;
15 — защитная крышка;16 — пульсирующая струйная головка

 

Ждущие чернильно-струйные печатающие устройства более просты по конструкции (рис. 7.7), чем непрерывно-поточные, расходуют меньше чернил и, следовательно, дешевле. Однако производительность их ниже, чем непрерывно-поточных. Путем увеличения количества сопел в печатающей головке и применения чернил разных цветов чернильно-струйные печатающие устройства обеспечивают возможность получения за счет комбинации основных цветов цветных изображений.

Главными факторами, сдерживающими широкое распространение чернильно-струйных печатающих устройств в ПЭВМ, являются:

конструктивная и технологическая сложность; необходимость применения специальных чернил; необходимость использования специальных сортов бумаги, обеспечивающих поглощение, приемлемое для заданного типа чернил; низкая надежность печатающей головки (возможность засорения сопел и капилляров, засыхание чернил); высокая стоимость и т. д.

Термопечатающие устройства относятся к низкоскоростным печатающим устройствам (при последовательном формировании символа до 30 знак/с) и поэтому не рассчитаны на использование в системах с большим объемом печати. Они компактны, отличаются низким уровнем шума, обеспечивают удовлетворительное качество печати, имеют относительно простую конструкцию и низкую стоимость.

Для термопечати необходима специальная термочувствительная бумага, изменяющая цвет под воздействием тепла, выделяемого при нагреве. Регистрирующим органом в термопечатающих устройствах является термопечатающая головка (рис. 7.8). Основная часть — штабик (обычно стеклянный), на котором методами тонкопленочной, полупроводниковой или толстопленочной технологии сформированы матрица точечных резистивных нагревательных элементов, контактные площадки и проводники. Термопечатающая головка может в процессе работы скользить по бумаге. Символы высотой Н и длиной L формируются в виде мозаики, путем воздействия в конкретной точке теплового импульса, получаемого от точечного резисторного нагревательного элемента. Современные термопечатающие устройства при разрешающей способности до 12 точек/мм, осуществляют последовательное или построчное знакосинтезирование печатной строки, позволяют получать сухие документы, не издающие запахов, характерных для струйной печати, так как. в них не применяются жидкие токсичные красители и сухие тонеры.

 

 
Рис. 7.8. Устройство термопечатающей головки W — шест знака; L — длина знака)     Рис. 7.9, Принцип работы термодиффузионного печатающего устройства: 1 — термическая печатающая головка; 2 — термическая бумажная основа; 3 — формирование цвета термической бумаги; 4 — расплавленные чернила; 5 — наносимые чернила; б — пластина приемника

В термических переводных печатающих устройствах (термовосковых) используются резиновые валики, покрытые слоем восковых чернил. Тепло, поступающее от печатающей головки, плавит воск, и отпечаток проявляется на бумаге, где он, охлаждаясь, фиксирует изображение. Эта технология дает самые сочные, многоцветные и четкие изображения.

Широкому распространению в ПЭВМ таких термопечатающих устройств препятствуют использование специальной термочувствительной бумаге (как правило, восковой), более дорогой, чем обычная, и выцветание записи под воздействием прямого солнечного света и тепла. Эти ограничения устраняются при использовании термодиффузионного способа печати, т. е. при переносе в местах нагрева состава красящей ленты на обычную бумагу (рис.7.9).

Применяется специальная четырехслойная резистивно-термальная красящая лента, состоящая из полимерной основы, алюминиевого токопроводящего слоя и легкоплавкого слоя, герметизирующего пленку чернил. Термопечатающая головка имеет микроминиатюрные электроды, через которые энергия передается на красящую ленту. Печатающий механизм прижимает красящую ленту к бумаге, с электродов через полимерную основу передаются электрические заряды на алюминиевую фольгу, где происходит местный разогрев, разрушающий легкоплавкий слой. В результате осуществляется точечный перенос чернил на бумагу. Могут быть использованы и многоцветные красящие ленты. Уровень шума значительно ниже, чем у матричных печатающих устройств, и выше качество отпечатков. Недостатком подобных устройств является быстрый износ красящей ленты.

Лазерные печатающие устройства— более серьезная альтернатива традиционным ударным устройствам печати. Современным лазерным печатающим устройствам ПЭВМ свойственны отличное качество печати, высокая разрешающая способность. при выводе графической информации (24 точек/мм и более), высокая производительность (до 14 стр/мин и более), небольшие размеры, надежность. Принцип действия лазерных печатающих устройств схож с принципом действия электростатических копировальных устройств (рис. 7.10).

 

Рис. 7.10. Принцип работы лазерного печатающего устройства:

1 - твердотельный лазер; 2 - многогранный отражатель (зеркало);

3 - светочувствительный барабан; 4 - аппарат дня термического закрепления

тонера; 5 - приемно-комплектующее устройство; 6 - кассета с тонером;

7 - накопитель бумаги

 

Центральным элементом системы лазерного печатающего устройства является вращающийся барабан, покрытый светочувствительным полупроводниковым слоем толщиной несколько десятков микрометров. Полупроводниковый (селен и его сплавы в аморфном виде) слой в темноте является хорошим изолятором, поэтому поверхность барабана можно зарядить, подобно конденсатору, лучом высоковольтных ионизаторов, расположенных вблизи барабана. При освещении конкретной точки на поверхности барабана, заряженного электрическим зарядом, полупроводниковый слой становится проводящим только в этой точке и в ней происходит разряд. Данные, поступающие от ПЭВМ и содержащие информацию (графическую или текстовую), преобразуются в печатающем устройстве с помощью лазерно-оптической сканирующей системы в сигналы, модулирующие лазерный луч. При облучении точки поверхности барабана лазерным лучом переменной интенсивности остаточный заряд Оказывается пропорциональным изменению интенсивности лазерного луча. Таким образом, на поверхности барабана создается невидимое электростатическое изображение строки или страницы информации определенного формата. На следующем этапе изображение проявляется с помощью электростатически заряженной пылеобразной тонирующей краски из пластмассовых частиц диаметром порядка нескольких микрометров. Краска прилипает к поверхности барабана только там, где имеется статический заряд. Там, где поверхность была облучена лучом лазера, краска не прилипает. Проявленный сухой пылеобразной краской рисунок при вращении барабана прикасается к бумаге в точке приема, и под воздействием электростатического поля на поверхности бумаги формируется требуемый рисунок, который фиксируется путем расплавления краски специальными лампами и скрепления ее с бумагой.

Различают построчные и постраничные лазерные печатающие устройства. Постраничные лазерные печатающие устройства требуют для хранения изображения память достаточно большой емкости (до нескольких мегабайт). Ряд зарубежных фирм разработали модели лазерных печатающих устройств, имеющие расширенные функциональные возможности: растровую дигитализацию копируемою документа с записью в дисковый архив, прямое копирование документов,. печать выводимой из ПЭВМ информации с одновременным частичным копированием, т. е. можно подготавливать смешанные печатно-графические материалы для издательской деятельности.

К недостаткам лазерных печатающих устройств относятся: высокая сложность оптической сканирующей системы, содержащей множество оптических элементов (зеркальные многогранники для отклонения пучка; коллимирующие и фокусирующие линзы; цилиндрические линзы, используемые для коррекции ошибок позиционирования пучка, и др.); необходимость частой замены тонирующего порошка; повышенное влияние высокой температуры окружающей среды и влажности; большой объем требуемой буферной памяти; необходимость наличия специального программного обеспечения; высокая стоимость. Однако наметилась определенная тенденция к снижению стоимости лазерных печатающих устройств.

Требования, предъявляемые к печатающим устройствам и их основным характеристикам. Персональный характер ПЭВМ, специфика областей их применения обусловливают ряд определенных требований к печатающим устройствам. Печатающие устройства ПЭВМ должны быть дешевы, иметь малые габариты, массу, низкую потребляемую мощность, обеспечивать низкий уровень шума при работе. Они должны также обладать развитыми функциональными возможностями, в том числе возможностями вывода текстовой и графической информации, печати разнообразных наборов знаков, многоцветной печати и быть удобными при. эксплуатации их пользователем ПЭВМ. Например, если устройство способно печатать в обоих направлениях, т. е. не только слева направо, но и наоборот, то это в значительной мере повышает скорость печати. Если, например, устройство обладает логическими возможностями, то те строки, куда ничего не нужно писать, устройство способно просто «перескочить». Важны способ прогона бумаги, возможность подключения устройства автоматической подачи листа и укладки листов, легкосьемиость кассет с красящей лентой и т. д. Потребительское качество печатающих устройств определяется совокупностью и взаимосвязью их технических характеристик и зависит от назначения ПЭВМ. Поэтому не все типы печатающих устройств, применяемых в системах обработки данных, в больших или "портативных ЭВМ, оказываются пригодными для использования в составе профессиональных ПЭВМ.

Для пользователя профессиональной ПЭВМ важны следующие характеристики печатающих устройств: скорость, качество и цветность алфавитно-цифровой и графической печати; формат и качество бумаги и красящих лент, а также их доступность; простота (удобство) обслуживания и ремонта; программное обеспечение; методы кодирования и набор символов; вид интерфейсов и емкость памяти; уровень шума; потребляемая мощность; массогабаритные характеристики; внешнее оформление и др. Важнейшими характеристиками являются скорость и качество печати, обеспечиваемые обычно конкретным конструктивным исполнением печатающего устройства.

Скорость печати символьных (последовательных) устройств определяется количеством знаков, отпечатанных в секунду, а для параллельных (построчных и постраничных) — количеством строк или страниц, отпечатанных в минуту.

Качество печати определяется рядом параметров: числом символов, печатаемых в строке; шагом печати символов и строки, минимальной толщиной линий и допуском на нее, размерами знаков, плотностью печати, точностью и т. п., а также возможностью выделения («жирная» печать, получаемая двойной печатью знака или небольшим смещением контура знака), надстрочной и подстрочной печати, подчеркивания, печати графических изображений, многоцветной печати и т. п.

Набор печатаемых символов определяет возможности печати разнообразных текстовых и графических документов. В современных печатающих устройствах, кроме основного шрифта, как правило, имеется возможность программной генерации дополнительных символов. Некоторые печатающие устройства используют также другой вариант расширения библиотеки шрифтов. Точечные множества, необходимые для формирования альтернативных шрифтов, хранятся в микросхемах ПЗУ, содержащихся внутри специальных шрифтовых кассет. В процессе работы пользователь может изменять не только вид шрифта, но и размеры печатных символов, что особенно важно при распечатке таблиц.

Управление печатающими устройствами в основном осуществляется с помощью команд и кодов, стандартизованных фирмами Epson и IBM. Значительная часть наиболее распространенных команд для принтеров, например «возврат каретки», «табуляция» и др., а также символов, воспринимаемых принтером как коды, заимствована из набора символов кода ASCII. Управляющие последовательности начинаются специальным символом, име­ющим аббревиатуру ESC и значение в коде ASCII — 27.

 

<== предыдущая лекция | следующая лекция ==>
Назначение и устройство | Общие сведения. Важное значение для профессиональных ПЭВМ имеет возможность использования в них средств машинной графики
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 3040; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.038 сек.