Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предмет термодинамики

 

Термодинамика, являясь разделом теоретической физики, пред­ставляет собой одну из самых обширных областей современного естест­вознания – науку о превращениях различных видов энергии друг в друга. Это наука рассматривает самые разнообразные явления природы и охватывает огромную область химических, механических и физико-химических явлений.

Термодинамика в настоящее время может быть разделена на три части:

1) общую термодинамику, или физическую термодинамику, изучаю­щую процессы превращения энергии в твердых, жидких и газообразных телах, излучение различных тел, магнитные и электрические явления, а также устанавливающую математические зависимости между термо­динамическими величинами;

2) химическую термодинамику, которая на основе законов общей тер­модинамики изучает химические, тепловые, физико-химические про­цессы, равновесие и влияние на равновесие внешних условий;

3) техническую термодинамику, рассматривающую закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах, получив­ших название начал термодинамики.

Первое начало термодинамики представляет собой приложение к тепловым явлениям всеобщего закона природы – закона превращения и сохранения энергии.

Второе начало термодинамики устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц. Поэтому второе начало термодинамики имеет более ограниченное применение, нежели первое.

В начале XX в. два начала термодинамики были дополнены еще одним опытным положением, получившим название тепловой теоремы Нернста. Эта теорема, позволяющая определить свойства тел при очень низких температурах, используется главным образом в химической термодинамике и имеет ограниченное применение.

Техническая термодинамика начала развиваться с 20-х годов прошлого столетия, но, несмотря на свою сравнительную молодость, она заслуженно занимает в настоящее время одно из центральных мест среди физических и технических дисциплин.

В теоретической части техническая термодинамика является общим отделом, науки об энергии, а в прикладной части представляет собой теоретический фундамент всей теплотехники, изучающей процессы, протекающие в тепловых двигателях.

В термодинамике используются два метода исследования: метод круговых процессов и метод термодинамических функций и геометри­ческих построений. Последний метод был разработан и изложен в клас­сических работах Гиббса. Этот метод получил за последнее время ши­рокое распространение.

В начале второй половины XVIII в. была решена очень важная тех­ническая задача – был создан универсальный тепловой двигатель для промышленности и транспорта. Первую паровую машину изобрел русский инженер И. И. Ползунов. Она была построена уже после его смерти в 1766 г., т. е. почти за 20 лет-до паровой машины Джемса Уатта. И. И. Ползунов не только создал первую в мире паровую машину, но и изобрел к ней распределительное устройство и впервые осуществил автоматическое питание парового котла.

До 50-х годов XIX столетия наука рассматривала теплоту как осо­бое, невесомое, неуничтожаемое и не создаваемое вещество – теплород. Одним из первых, кто опроверг эту теорию, был М. В. Ломоносов. В 1744 г. в своей диссертации «Размышление о причине теплоты и хо­лода» он писал, что теплота состоит во внутреннем движении собствен­ной материи и указывал, что огонь и теплота состоят во вращательном движении частиц, из которых состоят все тела. Тем самым в своих работах М. В. Ломоносов заложил основы механической теории, теплоты. Однако Ломоносов не был понят современниками. Еще долгое время физики продолжали толковать о теплороде. Только, к середине XIX в. механическая теория теплоты в результате работ целого ряда ученых находит повсеместное признание, становится основой всей термодинамики и энергетики.

Открытие закона сохранения и превращения энергии, этого основ­ного закона естествознания, как указывал неоднократно Энгельс, ока­зало решающее влияние на все последующее развитие не только физики, но и всего естествознания в целом. Энгельс относит это открытие к чис­лу трех великих естественнонаучных открытий XIX в., благодаря которым был обоснован – по существу диалектико-материалистический взгляд на природу.

Одним из первых высказал идею закона сохранения энергии М. В. Ломоносов. В работе «Рассуждение о твердости и жидкости тел», в письме к Эйлеру от 5 июля 1747 г. Ломоносов писал: «Все перемены в натуре случающиеся, такого суть состояния, что сколько чего у од­ного тела отнимается, cтолько же присовокупляется к другому. Так, где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силой другое, столько же теряет, сколько сообщает другому, которое от него движение получает».

В данной формулировке Ломоносова еще не содержится количест­венных соотношений, но, несмотря на это, отчетливо и полно опреде­ляется сущность закона сохранения и превращения энергии. Только через столетие благодаря работам Лавуазье, Майера, Гельмгольца и других этот закон получил всеобщее признание. Отдавая должное гениальному предвидению М. В. Ломоносова, закон сохранения и прев­ращения энергии часто называют его именем.

В 1840 г. химик, русский академик Г. Гесс сформулировал принцип сохранения энергии применительно к химическим процессам. В даль­нейшем целая плеяда русских и советских ученых теоретиков своими работами значительно расширила учение о теплоте и внесла большой вклад в развитие термодинамики.

Техническая термодинамика, применяя основные законы к про­цессам превращения теплоты в механическую работу и механической работы в теплоту, дает возможность разрабатывать теорию тепловых двигателей, исследовать процессы, протекающие в них, и позволяет выявлять их экономичность для каждого типа отдельно.

 

 

<== предыдущая лекция | следующая лекция ==>
Ведение. Развитие энергетики в мире | Основные термодинамические параметры состояния
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 817; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.