Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Исторические извержения




Первые описания извержений Ол Доньо Ленгаи относятся к 1883 г. Так же описаны периоды активности между 1904 и 1910 гг. и позднее между 1913 и 1915 гг. Сильное извержение произошло в июне 1917 г., в результате которого вулканический пепел выпадал на расстоянии до 48 км от вершины вулкана. Подобные сильные извержения происходили в 1926 г. и между июлем и декабрем 1940 г., во время которых вулканический пепел летел до 100 км от Ол Доньо Ленгаи.

 

Гидротермальная гипотеза. На всех карбонатитовых месторождениях имеются признаки гидротермально-метасоматического происхождения карбонатов:

а) постепенные переходы от карбонатов к замещаемым породам, наличие типичных гидротермальных прожилков;

б) температуры образования карбонатных минералов бывают более низкими, чем в магматических образованиях (от 600 до 200°С);

в) зависимость состава темноцветных и акцессорных минералов от состава замещаемых силикатных пород.

Так, Л.Бородин полагает, что все карбонатиты метасоматические. И только ультраосновные породы в карбонатитовых массивах имеют интрузивную природу. Щелочные разности пород образуются за счет нефелинизации пироксенитов.

Комплексная гипотеза. Карбонатиты имеют комбинированное происхождение, их образование начинается на магматическом этапе и продолжается на гидротермальном. Каждый этап включает несколько стадий, связанных с последовательным внедрением порций магматических расплавов: ультраосновного, щелочного, карбонатного, а также различных по составу и температурам порций гидротермальных растворов. Внедрение расплавов и растворов осуществляется по цилиндрическим, коническим, радиальным трещинам в остывающем многофазовом интрузиве.

Вопрос 3. Форма карбонатитовых тел, зональность карбонатитовых массивов. Залежи карбонатитов образуют штоки, конические дайки, падающие к центру массива, кольцевые дайки, падающие в противоположную сторону, радиальные дайки. Трубообразные карбонатитоносные интрузии ультраосновного – щелочного состава в плане характеризуются концентрически зональным строением за счет многофазового внедрения магмы. Причем зональность может быть различна. Так, на Ковдорском массиве от периферии к центру наблюдаются дуниты-перидотиты, щелочные породы, ореолы метасоматических пород – фенитов, карбонатиты. На Кондерском массиве зональность обратная – в центре ультраосновные породы, на периферии щелочные породы и карбонатиты.

Вопрос 4. Примеры месторождений (апатит-магнетитовых, флогопитовых, медных). Карбонатиты имеют важное промышленное значение. С ними связаны основные ресурсы тантала, ниобия, редких земель, существенные запасы титана, железных руд, флюорита, флогопита, апатита и др.

Полезные ископаемые карбонатитового генезиса можно представить в виде обобщенной модели, где определенный тип полезного ископаемого соответствует разной глубине формирования в трубообразном магматическом теле. На глубине 3-6 км от поверхности формируются железо, ниобий, фосфор. В средней зоне (3-2,5 км) – ниобий, тантал, редкие земли, церий, селен, фосфор, железо, флогопит. В верхней зоне из постмагматических (посткарбонатитовых) растворов образуются флюорит, барит, стронцианит. И в приповерхностной зоне накапливаются торий, редкие земли.

Главными типами промышленных месторождений являются следующие:

1) апатит-магнетитовые карбонатиты на Кольском полуострове (Ковдорское), в Африке, Канаде, Бразилии; запасы железной руды достигают сотен миллионов тонн при содержании железа от 20 до 70%; запасы апатита сопоставимы по масштабам при содержании P2O5 10 – 15 %;

2) флогопитовые карбонатиты, образованные на контакте железо-магнезиальных пород со щелочными и представленные крупными зонами слюд, флогопитовыми жилами и прожилками, неравномерной вкрапленностью; качество слюды невысокое, содержание её от десятков и сотен килограммов в кубическом метре до сплошных слюдяных масс (Ковдорское месторождение); в коре выветривания по флогопитам на Ковдорском месторождении образовываются богатые залежи вермикулитовых руд;

3) карбонатиты с медными рудами - месторождение Палабора (ЮАР) с запасами меди 1,5 млн. т; массив ультраосновных - щелочных пород представлен трубообразным телом в диаметре 0,5-0,7 км; центральная часть – карбонатиты, периферическая – магнетит-апатитовые руды; в карбонатитах – вкрапленники борнита, халькопирита

Литература: [1], с. 82-90; [2] с. 66-77; [3], с. 103-108

Проектные задания студентам по самостоятельной работе по теме 6.

Проанализировать сильные и слабые стороны различных генетических гипотез формирования карбонатитовых месторождений. Дать характеристику строения и практической ценности карбонатитов.

Вопросы для самоконтроля знаний:

1. Из каких минералов состоят карбонатиты?

2. С какими комплексами магматических пород связаны карбонатиты?

3. В каких геологических обстановках образуются карбонатиты?

4. Какое строение имеют карбонатитовые массивы?

5. При каких температурах формируются карбонатиты?

6. В чем заключается магматическая гипотеза образования карбонатитов?

7. Какие данные свидетельствуют о гидротермально-метасоматическом происхождении карбонатитов?

8. Привести пример полезных ископаемых карбонатитового генезиса.

Лекция 7 (2 часа). Пегматитовые месторождения

 

Общая характеристика. Формы пегматитовых тел, возраст, глубины и физико-химические условия формирования. Генетические гипотезы образования пегматитов. Полезные ископаемые пегматитовых месторождений.

Вопрос 1. Общая характеристика пегматитов. Пегматитами называются своеобразные по минеральному составу, структурам и генезису минеральные образования, которые сложены агрегатами крупных кристаллов, относящихся к алюмосиликатам. Наиболее характерными полезными ископаемыми пегматитов являются Li, Be, Ta, Cs, Nb, Th, Sn, U, слюды керамическое сырье, пьезооптическое сырье, драгоценные камни.

По генезису выделяется две разновидности пегматитов: магматические и метаморфогенные.

Магматические пегматиты пространственно и генетически связаны с материнскими интрузиями и представляют собой позднемагматические тела, формирующиеся на завершающих стадиях глубинных массивов. Они занимают промежуточное положение между интрузивными породами и постмагматическими рудными жилами. Пегматиты располагаются внутри материнских интрузий или в непосредственной близости от них. Они характеризуются тождественностью состава с этими породами, но отличаются от них меньшими размерами, формой (жилы, гнезда), неравномерной крупно- и гигантозернистой структурой, большим количеством минералов, содержащих летучие компоненты, минерализаторы. Пегматиты могут встречаться в магматических породах любого состава. Но подавляющее количество месторождений приурочено к пегматитам в гранитоидных или щелочных магматических комплексах. Такие комплексы формируются в земной коре на глубинах более 3 км в коллизионных обстановках, в зонах тектоно-магматической активизации континентов.

Основными минералами гранитных пегматитов являются: кварц, калиевый полевой шпат, биотит, мусковит; могут присутствовать топаз, касситерит, берилл, флюорит, сподумен, турмалин, апатит, торий, редкие и радиоактивные элементы.

Пегматиты в щелочных формациях состоят из микроклина или ортоклаза, нефелина, эгирина, арфедсонита, эвдиалита, апатита, содержат цирконий, ниобий, тантал, серий, лантан, редкие земли.

Метаморфогенные пегматиты приурочены к метаморфическим комплексам пород и образуются за счет метаморфических преобразований пород. Они локализованы преимущественно в древних (докембрийских) гранитогнейсовых формациях. Их минеральный состав соответствуют определенной метаморфической фации. В обстановке дистен-силлиманитовой фации - мусковитовые пегматиты; андалузит-силлиманитовой – сложные редкометальные пегматиты (например, сподуменовые, т.е. литиевые).

Вопрос 2. Формы пегматитовых тел, возраст, глубины и термобарические условия формирования. По форме пегматитовые тела представлены жилами, реже линзами, гнездами, трубами. Например, на Мамском месторождении мусковита (в Забайкалье) пегматитовые жилы имеют протяженность до 200 м, мощность до 50 м. Встречаются в природе пегматитовые жилы и больших размеров (например, в Заире - до 5 км длиной и 400 м мощности). Плитообразные жильные тела литиевых (сподуменовых) пегматитов в Афганистане по падению прослежены на 600 м и до конца не вскрыты на глубину.

Геологический возраст пегматитов разнообразен – от архея до мезозоя. Но преобладают все же докембрийские пегматиты. Например, архейский возраст имеют пегматиты Анабарского щита, протерозойский – пегматиты Украинского кристаллического массива, Кольского полуострова. К юным эпохам количество полезных ископаемых в пегматитах уменьшается. Например, месторождения бериллия в докембрийских пегматитах составляют – 75 % от их общего количества, в палеозойских – 23 %, а в мезозойских – 2 %.

Физико-химические условия формирования Глубина формирования пегматитов – от 1,5-2 до 16-20 км. В приповерхностной зоне пегматиты не образуются. Температуры кристаллизации минералов пегматитов от 800-700°С (биотит, ранний кварц) до 50°С (халцедон). Процесс формирования магматогенных пегматитов начинается с отдаления остаточного магматического расплава, обогащенного летучими компонентами (H2O, CO2, F, Cl и др.). Нормальный гранит застывает при температурах ниже 1000°С до 800°С, а в присутствии минерализаторов эти температуры могут снижаться до 730-640°С.

Вопрос 3. Генетические гипотезы образования пегматитов. Несмотря на высокую промышленную ценность пегматитов, до сих пор остаются нерешенными многие генетические вопросы. Это объясняется множеством их типов, сложностью строения, неоднородности состава разных пегматитов, что свидетельствует о формировании пегматитов в широком диапазоне физико-химических и геологических условий. Геологические гипотезы расходятся по следующим пунктам: роль магматического расплава и метасоматоза, источник преобразующих растворов, степень замкнутости системы и растворимость летучих компонентов (прежде всего H2O) в расплаве. Можно выделить 4 основные гипотезы.

1. Гипотеза А.Е.Ферсмана, развитая затем К.А.Власовым, А.И.Гинзбургом. Пегматиты являются продуктами затвердевания специфического остаточного расплава, обособленного от магматического очага, высокоминерализованного летучими соединениями – H2O, F, Cl, B,CO2 и др. Полная эволюция этого расплава происходит в замкнутой системе. Вначале кристаллизуются типичные магматические минералы, которые затем подвергаются воздействию летучих минерализаторов, создающих пневматолито-гидротермальные растворы. Первичные минералы частично замещаются, возникают новые. А.Е.Фесман выделял 5 этапов образования пегматитов:

· магматический (900-800°С);

· эпимагматический (800-700°С)

· пневматолитовый (700-400°С)

· гидротермальный (400-50°С)

· гипергенный (менее 50°С).

2. Гипотеза А.Н.Заварицкого, В.Д.Никитина и др. отрицает значение остаточного магматического расплава и ведущую роль в становлении пегматитов отдает процессам собирательной перекристаллизации близких к гранитным пегматитам пород (гранитов, аплитов). Перекристаллизация осуществляется под воздействием горячих газово-водных растворов и приводит к формированию крупно- и гигантозернистых минеральных агрегатов. 1 этап – система закрытая. Горячие газово-водные растворы находятся в химическом равновесии с вмещающими гранитными породами, перекристаллизация происходит без изменений состава этих пород. На втором этапе растворы просачиваются через боковые породы, перестают быть химически равновесными, начинаются процессы растворения, замещения, образуются сложные метасоматические пегматиты.

3. Гипотеза Р.Джонса, Е.Камерона, Ф.Хесс и др., имеющая компромиссный характер. Пегматиты образуются комбинированным путем в два этапа. На первом магматическом этапе – закрытая система, из остаточного расплава кристаллизуются простые зональные пегматиты (фракционная кристаллизация). Затем система открытая, под воздействием газово-водных минерализованных глубинных растворов осуществляется метасоматическая переработка ранее отложенных минералов с выносом отдельных компонентов. Так возникают метасоматические части пегматитов, содержащие кварц, альбит, мусковит, минералы редких металлов.

4. Метаморфогенная гипотеза (Г.Рамберг, Ю.М.Соколов) и др.) объясняет условия формирования пегматитов в древних метаморфических комплексах. Пегматиты формируются на разных стадиях метаморфогенного преобразования преимущественно докембрийских пород и по особенностям состава соответствуют фации метаморфизма вмещающих пород. Согласно данной гипотезе пегматиты – продукты регрессивного метаморфизма.

Вопрос 4. Полезные ископаемые пегматитовых месторождений. Среди пегматитовых месторождений выделяется три генетических класса: простые, перекристаллизованные, метасоматически замещенные.

Простые пегматиты по минеральному и химическому составу соответствую исходным породам. Так, простые гранитные пегматиты содержат кварц, калиевый полевой шпат, кислые плагиоклазы, бесцветную слюду, турмалин, гранат. Они характеризуются письменной (графической) структурой, не обнаруживают признаков перекристаллизации и метасоматоза. К ним приурочены месторождения керамического сырья, используемого в фарфоровой, фаянсовой промышленности – в Карелии (Хетоламбино, Чкаловское), на Кольском полуострове, Украине (Бельчаковское, Глубочанское), в Восточной Сибири (Мамско-Чуйские).

Перекристаллизованные пегматиты – имеют крупнозернистые, гигантозернистые структуры (по А.Н.Заварицкому 1 этап). Раствор находится в равновесии с составом ранних пегматитообразующих соединений. Наиболее ценный минерал этих пегматитов – мусковит. Пример месторождений – Мамский район в Сибири, Карелия, Кольский полуостров. Площадь кристаллов мусковита иногда достигает нескольких квадратных метров.

Метасоматически замещенные – с полной зональностью и наличием крупных (до 200 м3) открытых полостей с друзами ценных минералов. Пегматиты этого типа не только перекристаллизованы, но и метасоматически преобразованы под воздействием горячих газово-водных растворов. Характерны месторождения, имеющие важное промышленное значение: лития, бериллия, цезия, рубидия (их называют редкометальными пегматитами). Кроме того их разрабатывают на руды олова, ниобия и тантала, вольфрама, урана, редких земель. Из нерудных полезных ископаемым к ним приурочены оптическое сырье, драгоценные камни. Пример – месторождение Кайстон (США), на котором встречен сподумен (LiAlSi2O6) длиной 16 м, в диаметре 1 м, массой 90 т. В Южной Африке на пегматитовом месторождении встречались кристаллы берилла (Be3 Al2Si6O18) массой 30 т. Месторождения корунда с его драгоценными разновидностями- сапфиром и рубином – Урал (Карабашское, Борзовское).

Литература: [1], с. 91-102; [2] с. 77-92; [3], с. 96-102

Проектные задания студентам по самостоятельной работе по теме 7.

Изучить генезис пегматитовых месторождений.

Вопросы для самоконтроля знаний:

1. Какие образования относят к пегматитам?

2. Как различаются пегматиты по составу?

3. С какими пегматитами связаны промышленные месторождения?

4. Гипотеза А.Ферсмана и её недостатки

5. Гипотеза Р.Джонса, Е.Камерона и её недостатки;

6. Гипотеза А. Заварицкого и критические замечания к ней;

7. Метаморфогенная гипотеза формирования пегматитов и её ограничения.

Лекция 8 (2 часа). Альбитит-грейзеновые месторождения

Общая характеристика альбититов и грейзенов, геологические и физико-химические условия формирования. Модели образования, геохимическая зональность. Полезные ископаемые альбититовых и грейзеновых месторождений (ниобий, тантал, уран, редкие земли, бериллий, литий, молибден, вольфрам, олово).

 

Вопрос 1. Общая характеристика альбититов и грейзенов, геологические и физико-химические условия формирования. Альбититы и грейзены пространственно и генетически связаны с кислыми интрузивами – гранитами, щелочными гранитами, реже со щелочными магматическими породами. Их образование обусловлено постмагматическим щелочным метасоматозом, который наиболее интенсивно проявляется в апикальных частях гранитных куполов и их апофиз, т.е. в гипабиссальных условиях.

Альбитит – это лейкократовая метасоматическая порода, основная масса которой состоит из мелкозернистого альбита, а на её фоне – порфировые выделения кварца, микроклина, иногда слюды, реже амфибола. К ним приурочены рудные минералы, содержащие редкие металлы, уран, цирконий, ниобий, гафний.

Грейзен состоит из легко расщепляющегося агрегата слюды (мусковита, биотита) и кварца с примесью турмалина, флюорита, топаза. Рудные минералы представлены бериллом, литиевой слюдой (циннвальдитом), касситеритом, молибденитом, вольфрамитом.

Формирование альбитит-грейзеновых месторождений происходило за счет воздействия восходящих горячих и химически агрессивных растворов на раскристаллизовавшуюся интрузивную породу. Постмагматические растворы являлись производными тех же кислых или щелочных магм, из которых формировались интрузивы. «Пропитывая» всю массу уже застывших интрузивов по пути следования вверх к кровле интрузива, растворы перегруппировывали породообразующие элементы.

Вначале развивался калиевый метасоматоз – ранняя микроклинизация, которая происходила обычно в ядерных частях массива при температурах 650-580°С в обстановке повышенных давлений. Затем происходила инверсия процесса и активизировался натриевый метасоматоз при температурах 550-400°С, что приводило к ранней альбитизации периферических зон массивов в условиях пониженного давления. Процесс происходил на фоне восходящей кислотности раствора. При этом калий выносился и сменялся натрием. Растворы оставались ещё надкритическими.

Максимальная кислотность растворов наступала в следующую стадию метасоматоза – стадию грейзенизации. Растворы, поднимаясь к кровле массивов и в их надапикальные части, переходили из «надкритических» в гидротермальные. Температуры при этом снижались от 450 до 200°С. В условиях повышенной активности фтора, бора из интрузивных пород выносились щелочи, алюминий, рудные элементы примеси. Так, в верхних частях интрузивов и над ними формировались грейзены.

При мощных метасоматических процессах перегруппировывались и рудные элементы. Особенностью гранитоидных и щелочных пород с альбитит-грейзеновыми месторождениями является то, что они сами (изначально) содержат повышенные количества некоторых рудных элементов, концентрация которых при метасоматозе приводила к формированию их промышленных скоплений. За счет рафинирования гранитоидов при метасоматозе одни металлические элементы примеси переоткладывались в альбититах, другие – в грейзенах.

Месторождения альбитового и грейзенового генезиса известны от докембрия до альпийского возраста. Примером молодых месторождений являются штоки кислых интрузивов с альбититами в районе г. Пятигорска. Докембрийские месторождения альбититов – на Украинском кристаллическом щите.

Форма рудных тел. Для альбититовых месторождений характерны штокообразные массы метасоматически преобразованных куполов и апофиз материнских изверженных пород. Их площадь достигает несколько квадратных километров, распространение на глубину – первые сотни метров (реже до 600 м). Для грейзеновых месторождений формы тел различны:

- штокообразные тела при массовом метасоматозе (эндогрейзен);

- штокверки (система мелких трещин, жил) для экзогрейзенов.

Вопрос 2. Модели образования, геохимическая зональность. Общая схема перераспределения элементов при метасоматическом преобразовании гранитоидов в альбититы и грейзены показана на рисунке 1.

 

 


Рисунок 1 – Модель строения альбитит-грейзенового

месторождения

Существенный вынос элементов происходит из нижней подрудной зоны. Так, по В.Барсукову, на подобных месторождениях при содержании олова в неизмененных гранитах около 26 г/т, в зоне выноса Sn - 4–5 г/т. Если в биотите содержание Sn – 200-300 г/т, то в замещающем его мусковите - 20-30 г/т.

Месторождения альбититов и грейзенов едины по условиям образования, однако в природе редко бывают вместе, как это показано на модели рисунка 1. Это связано с разной степенью проявления того или иного процесса и состава материнских интрузий. В нормальных гранитах чаще отмечаются грейзеновые месторождения, а в щелочных – альбититовые.

Вопрос 3. Полезные ископаемые альбититовых и грейзеновых месторождений. Альбититовые и грейзеновые месторождения, несмотря на генетические и пространственные связи, существенно отличаются друг от друга по металлогенической специализации. Типоморфными элементами альбититов являются ниобий, тантал и цирконий, а для грейзенов наиболее характерны вольфрам, олово, молибден и др.

Среди грейзеновых месторождений по преобладающей рудной минерализации можно выделить следующие основные типы: вольфрамит-топаз-кварцевый (Спокойненское в Забайкалье, Акчатау в Казахстане), касситерит-топаз кварцевый (Этыка в Забайкалье) и комплексный вольфрамит-молибденит-топаз-кварцевый. Примером комплексного грейзенового месторождения является месторождение Восточный Коунрад (Казахстан) с ниобием, танталом, цирконием, торием, оловом, вольфрамом, молибденом, бериллием, висмутом.

Литература: [1], с. 120-128; [2] с. 92-105

 

Проектные задания студентам по самостоятельной работе по теме 8.

Изучить особенности генезиса альбититовых и грейзеновых месторождений.

Вопросы для самоконтроля знаний:

1. Из каких минералов состоит альбитит?

2. Какими минералами представлен грейзен?

3. С какими магматическими породами связано формирование альбитов и грейзенов?

4. Как происходит геохимическая перегруппировка породообразующих элементов и типомофных металлов при формировании альбититов и грейзенов?

5. Какие металлы могут накапливаться в альбититах?

6. Что такое фениты?

7. Как формируются линейные альбититы?

8. Что такое эндо- и экзогрейзены и где они формируются?

9. Какую форму рудных тел имеют грейзеновые месторождения

10. Какие полезные ископаемые образуются в грейзенах?

Лекция 9 (2 часа). Скарновые месторождения

Общая характеристика, форма и состав скарновых тел, связь с магматическими формациями. Физико-химические условия образования. Генетические гипотезы (инфильтрационно-диффузионная гипотеза Д.С.Коржинского, стадийная гипотеза П.Пилипенко)). Полезные ископаемые скарнов (скарновые месторождения железа, вольфрама и молибдена, меди, цинка и свинца, бора).

 

Вопрос 1. Общая характеристика, связь с магматическими формациями, форма и состав скарновых тел. Скарн – это метасоматическая порода известково-силикатного состава, которая образуется в приконтактовой зоне карбонатных и силикатных пород. Скарны, которые содержат промышленные скопления полезных ископаемых, называются скарновыми или контактово-метасоматическими месторождениями. Различают эндоскарны, располагающиеся в пределах измененной части интрузивов, и экзоскарны, размещенные во вмещающих породах. Преобладают экзоскарны, локализующиеся непосредственно в зоне контакта интрузивов. Некоторые скарновые залежи по плоскостям напластования вмещающих пород удаляются от интрузивов на десятки и сотни метров, и даже первые километры.

Наиболее интенсивно скарнообразование идет на контактах с интрузиями среднего состава – гранодиоритами, кварцевыми диоритами, монцонитами. Благоприятными факторами являются пологие контакты интрузий, тектоническая нарушенность их эндо- и экзоконтактовых зон, карбонатный состав вмещающих пород (известняки, доломиты и мергели).

Форма рудных тел. Для скарнов, как метасоматических тел, характерны залежи с раздувами, пережимами, извилистыми границами. По морфологии выделяют скарновые залежи следующих типов: пластовые и пластообразные, линзовидные, штоки, жилы, гнезда, сложные ветвящиеся тела. Гнездообразные тела – в поперечнике до нескольких метров, трубообразные могут быть вытянуты на 1 -1,5 км, пластообразные при мощности 150 -200 м имеют протяженность до 2 -2,5 км.

Состав. В зависимости от состава пород, вмещающих интрузии, скарны делятся на известковые и магнезиальные (иногда выделяют также силикатные скарны). Месторождения полезных ископаемых, связанные с этими основными видами скарнов, отличаются друг от друга вещественным составом, характерными комплексами полезных ископаемых, а также особенностями морфологии и условий залегания.

Известковые скарны формируются при замещении известняков. Они наиболее распространены в природе. К главным минералам их относятся гранат (гроссуляр-андрадитового ряда) и пироксен (диопсид-геденбергитового ряда). Существенное значение могут иметь везувиан, волластонит, амфиболы, эпидот, магнетит, кварц, карбонаты. В скарновых залежах часто наблюдается зональное строение, выражающееся в закономерной смене высокотемпературных минеральных ассоциаций более низкотемпературными по мере удаления от материнской интрузии. Для скарнов характерны друзовые, крустификационные, полосчатые, массивные и вкрапленные текстуры. Известковые скарны вмещают промышленные месторождения всех металлов, кроме хрома, сурьмы, ртути, а также многих неметаллических полезных ископаемых.

Магнезиальные скарны формируются при замещении доломитов и доломитизированных известняков. Типоморфными минералами являются диопсид, форстерит (магниевый оливин), шпинель, флогопит, серпентинит, магнетит, людвигит (железо-магниевый борат), доломит, кальцит. Рудные тела - линзы, пластообразные и сложные залежи. Характерно их зональное строение. Наибольшее промышленное значение имеют людвигит-машнетитовые (железо-борные), флогопитовые и хризотил-асбестовые месторождения.

Вопрос 2. Физико-химические условия образования. Температурный диапазон формирования скарнов: известковых от 1000 до 400°С, магнезиальных магматической стадии от 1000 до 650°С, магнезиальных послемагматической стадии от 650 до 450°С. Процесс образования скарновых месторождений многостадийный. Так, на полиметаллическом скарновом месторождении Верхнее (Приморский край) минералообразование протекало в четыре стадии:1) предрудную скарновую – волластонит-гранатовую (свыше 600°С), 2) скарново-сульфидную (600-400°С), 3) сфалерито-галенитовую (350-120°С), 4) халцедон-кальцитовую (100-20°С), минералы которых отлагались в виде друз в открытых полостях.

Вопрос 3. Генетические гипотезы. Скарны образуются в результате комплексного воздействия тепла интрузий и горячих минерализованных газово-жидких водных растворов. За счет прогрева и термального метаморфизма вмещающие породы перекристаллизовываются без изменения состава. Известняки превращаются в мраморы, глинистые сланцы – в роговики. Процесс изохимический. Но всякий гранитный интрузив сопровождается газово-жидкими постмагматическими растворами. Летучие компоненты выделяются из расплава со стороны застывающего интрузива, либо из его глубинных частей, В зонах, куда по порам, мелким трещинам проникают такие растворы, происходят аллохимические метасоматические процессы – т.е. с привносом и выносом подвижных элементов. Существует две главные гипотезы формирования скарновых месторождений:

1) инфильтрационно-диффузионная,

2) стадийная

Инфильтрационно-диффузионная гипотеза была разработана Д.С.Коржинским, который вначале выдвинул идею биметасоматического образования скарнов. Скарны образуются по обе стороны разогретого контакта гранитоидной и карбонатной пород, контакт пропитан горячим раствором, за счет воздействия которого происходит выравнивание состава пород. Алюминий, кремнезем – во вмещающие породы, кальций, магний – в сторону интрузива. Т.е. происходит встречный диффузионный отток химических элементов из областей высокой концентрации, в области низких концентраций. Между соединениями раствора происходят химически реакции – за счет них образуются минералы скарнов с Ca, Mg, Fe, реже Mn – гранаты (чаще андрадит-гроссуляр) и пироксены (геденбергиты, диопсиды). Температуры биметасоматоза – 800-400°С. Единственный рудный минерал скарнов, который может образоваться в таких условиях – магнетит.

Однако такая теория (биметасоматическая) не объясняла привнос в зону скарнов SiO2. Его не хватало при подсчете баланса вещества. Впоследствии Д.С.Коржинский развил свою теорию и дополнил её инфильтрационной. При инфильтрационном процессе постмагматические растворы могут привносить с собой компоненты, особенно рудные – Cu, Pb, Zn, W, Mo. Они могут циркулировать по трещинам в экзоконтактах интрузий там откладывать минералы скарнов. Температуры таких растворов могут снижаться от 400 до 200°С и даже ниже.

Гипотеза стадийная (П.Пилипенко). Главная масса минералов скарнов образуется за счет привноса специфическими скарнообразующими растворами и метасоматоза на контакте интрузий и вмещающих карбонатных пород. Выделяется 6 главных стадий метасоматоза, при снижении температуры.

Вопрос 4. Полезные ископаемые скарнов. К известковым скарнам приурочены магнетитовые и кобальт-магнетитовые месторождения (Высокогорское, Гороблагодатское на Урале; Соколовское и Сарбайское в Казахстане), вольфрам-молибденовые месторождения (Тырныауз на Северном Кавказе), медные – халькопиритовые месторождения (Турьинские рудники на Урале), свинцово-цинковые – галенит-сфалеритовые месторождения (Верхнее, Дальнегорское в Приморье).

К магнезиальным скарнам приурочены железо-борные месторождения (Таёжное, Железный Кряж в Восточной Сибири), флогопитовые месторождения (Алдан), хризотил-асбестовые месторождения (Аспагаш, Бистаг в Красноярском крае).

Литература: [1], с. 103-119; [2] с. 105-130; [3], с. 109-118

 

Проектные задания студентам по самостоятельной работе по теме 9.

Изучить условия образования скарновых месторождений

Вопросы для самоконтроля знаний:

1. Что такое метасоматоз – дать определение;

2. Что такое биметасоматоз в понятии Д.С.Коржинского?

3. Как происходит контактово-инфильтрационный метасоматоз?

4. Как образуются известковые скарны, и какие минералы для них характерны?

5. Как образуются магнезиальные скарны, и какие минералы для них характерны?

6. Какие геологические структуры благоприятны для локализации скарновых месторождений?

7. Какие температуры образования характерны для скарновых месторождений?

8. Привести пример полезных ископаемых скарнового генезиса.

 

Лекции 10, 11 (4 часа). Гидротермальные месторождения

Общая характеристика. Связь с магматизмом и гидротермальные изменения вмещающих пород. Зональность гидротермальных месторождений. Ореолы рассеяния. Физико-химические условия рудообразования, источники воды и минерального вещества гидротермальных систем, формы переноса минеральных соединений гидротермальными растворами.

Длительность образования гидротермальных месторождений. Классификация месторождений. Генетические типы гидротермальных месторождений.

 

Вопрос 1.Общая характеристика. Гидротермальные месторождения – это месторождения, созданные горячими минерализованными растворами, циркулирующими в земной коре. Полезные ископаемые возникают как вследствие отложения минеральных масс в пустотах горных пород, так и при замещении пород, по которым циркулируют гидротермальные растворы. Наиболее типичной формой рудных тел являются жилы. Часто встречаются штокверки, линзы, гнезда, пластообразные залежи и сложные по форме комбинированные тела. Образование таких месторождений часто связывается с производными магматических очагов (преимущественно кислых). Однако существуют и другие источники горячих минерализованных растворов (подземные воды глубокой циркуляции, собственные флюиды осадочно-породных бассейнов и др.). Гидротермальные месторождения обычно сопровождаются ореолами гидротермально измененных пород, а также ореолами рассеяния рудообразующих металлов, что используется при поисках данных месторождений.

Размеры тел полезных ископаемых гидротермального происхождений изменяются в широких пределах. На Березовском месторождении золота – это жилы, длиной 2-3 м, встречаются жильные тела, протяженностью несколько километров и даже сотни километров (Материнская жила, Калифорния).

Доказательством формирования полезных ископаемых из гидротерм являются многочисленные исследования современных минеральных источников. Горячие воды (80-96°С) Узун-Гейской системы на Камчатке за 100 лет вынесли (в тыс. тонн): мышьяка – 26, сурьмы – 5, ртути -2,5, цинка – 2, свинца и меди по 2,5. Фумаролы «Долины тысячи дымов» на Аляске ежегодно выделяют свыше миллиона тонн соляной и около 200 тыс. т плавиковой кислоты. Горячие воды глубокой скважины Южной Калифорнии представлены высококонцентрированным (36%) гидротермальным раствором, с хлоридами щелочей, 2 г/т серебра, 15 г/т меди, 100 г/т свинца, 700 г/т цинка.

Гидротермальные месторождения имеют важное промышленное значение для цветных, благородных, редких, радиоактивных металлов, многих нерудных полезных ископаемых (хризотил-асбеста, барита, флюорита, магнезита, гоного хрусталя, исландского шпата и др.).

Вопрос 2. Связь с магматизмом и гидротермальные изменения вмещающих пород. Гидротермальные месторождения могут образовываться в различных геодинамических обстановках, но преимущественно – в зонах орогенеза и при тектоно-магматической активизации континентов. Поэтому наиболее типична – связь гидротермальных процессов с гранитоидным магматизмом в разных его проявлениях. Месторождения могут пространственно и генетически связаны интрузиями (штоками, дайками) гранитов, гранодиоритов, диоритов, а также с вулканическими андезитодацитами, риолитами, реже они находятся в ассоциациях с формациями щелочных и трапповых пород. Но в связи с перидотивой и габбровой формациями гидротермальные месторождения практически не образуются. Это объясняется разной насыщенностью водой (растворимостью воды) в магмах основного, ультраосновного и кислого состава.

Формы связи гидротермальных месторождений и изверженных пород могут быть:

- непосредственные (собственно генетические) или материнские, при которых месторождения располагаются в центре или по периферии магматических массивов, а растворы, из которых они формируются являются постмагматическими;

- парагенетические, косвенные или братские, при которых постмагматические минеральные месторождения, часто разобщающиеся от интрузивной массы, особенно на глубине, являются производными породившего их общего глубинного магматического очага;

- агенетические, случайные, объединяющие на одной площади генетически не связанные интрузивы и гидротермальные месторождения, особенно принадлежащие разным геологическим эпохам;

- отсутствие видимых связей

Генетическая связь с магматизмом наиболее легко устанавливается, если гидротермальные образования находятся в непосредственной близости от (или внутри) массивов изверженных пород. Значительно труднее установить такие генетические взаимоотношения для гидротермальных месторождений, локализующихся на удалении от магматических комплексов – в осадочных или метаморфических формациях пород. Среди признаков связи между гидротермальными месторождениями и комплексами изверженных пород могут быть следующие:

1) одновременность магматических образований и гидротермальных месторождений, устанавливаемая по комплексу геологических признаков, по определениям абсолютного возраста минералов и др.;

2) приуроченность к одним и тем же геологическим структурам,

3) фациально-глубинные одинаковые условия образования,

4) одинаковая степень метаморфизма.

5) зональное размещение гидротермальных месторождений по отношению к массивам магматических тел,

6) геохимическое родство.

Гидротермальные изменения вмещающих пород. В процессе взаимодействия гидротермальных растворов с породами, вмещающими рудные тела, происходит их метасоматическое преобразование. По главному химическому элементу, вытесняющему другие породообразующие элементы, различают несколько видов околорудного метасоматоза.

Калиевый метасоматоз по мере снижения температуры процесса проявляется в виде калиевой полевошпатизации, мусковитизации, серицитизации и каолинизации. При калиевой полевошпатизации образуются ореолы ортоклаза или микроклина. Мусковит замещает темноцветные минералы, отчасти полевые шпаты. Серицитизация обычна для кислых и средних пород и связана с замещениями плагиоклаза. Каолинизация (аргиллизация) приводит к развитию в гидротермально измененных породах каолина, диккита, накрит.

Натриевый метасоматоз приводит к замещению калиевых полевых шпатов натровыми или кислыми плагиоклазами типа альбита, что обычно для кислых пород.

Кремниевый метасоматоз может развиваться по породам любого состава. Окварцевание по сланцам приводит к образованию роговиков, по кислым и средним изверженным породам формируются вторичные кварциты, по карбонатным породам – джаспероиды.

Магниевый метасоматоз приводит к преобразованию известняков и мраморов в доломиты.

Железо-магниевый метасоматоз – хлоритизация по породам различного состава (за исключением чистых кварцевых и карбонатных пород).

Кальциевый метасоматоз проявляется в виде пропилитизации и листвинитизации. Пропилиты развиваются среди средних и основных пород особенно эффузивных. В их состав входят карбонаты (анкерит, кальцит), альбит, хлорит, эпидот, серицит, соссюрит. Листвениты чаще всего развиваются по змеевикам, ультраосновным, основным породам. Этот процесс выражен развитием на месте темноцветных силикатов и полевых шпатов – магнезиально-железистых карбонатов, талька, хлорита, фуксита, серицита, пирита, с превращением породы в карбонат-кварц-серицитовый агрегат с пиритом.

На многих золоторудных гидротермальных месторождениях, локализованных в гранитоидных породах, широко развита кварц-серицитовая фация гидротермальных изменений – березитизация. Березит – это старинный термин уральских горняков, которые использовали данные метасоматические породы как поисковый признак на золото. Первое петрографическое описание березитов дано в 1975 г. Карпинским. В настоящее время березитами называют гидротермально измененные и часто рудоносные породы, образующиеся из разнообразных, но преобладающих алюмосиликатных пород (гл. обр. кислых), и состоящие из кварца и серицита, с постоянной примесью пирита и рутила.

Вопрос 3. Зональность гидротермальных месторождений. Первичная зональность рудных районов, полей, месторождений и отдельных рудных тел определяется закономерным изменением минерального и связанного с ним химического состава руд в пространстве.

Эволюционная гипотеза В.Эммонса, объясняющая причины зональности гидротермальных месторождений по отношению к магматическим очагам, была выдвинута в 20-х годах ХХ века. Согласно этой гипотезе восходящие растворы, отделяющиеся от остывающих массивов магматических пород и насыщенные минеральными соединениями, откладывают минералы в порядке, обратном их растворимости, входя во все более холодные области. Опираясь на этот принцип, В.Эммонс реконструировал постмагматическую рудоносную систему, разделив её на 16 зон (снизу вверх по мере падения температуры): пустая кварцевая, оловянная, вольфрамовая, мышьяковая (арсенопиритовая), висмутовая, золотая, медная, цинковая, свинцовая, серебряная, безрудная, серебряная, золотая, сурьмяная, ртутная, пустая. В дальнейшем было установлено, что такая собирательная зональность нигде в полном виде не проявляется, хотя отдельнрые её звенья наблюдаются в природе.

Пульсационная гипотеза С.Смирнова была разработана в противовес одноактной схеме зонального размещения постмагматических рудных месторождений. В 1937 г. С.Смирнов выдвинул новую модель о пульсационном поступлении гидротермальный растворов, которые импульсами отделяются от магматического очага по мере его остывания в результате неоднократного раскрытия трещин. Так осуществляется многостадийный гидротермальный процесс, что подтверждено преобладающими исследователями гидротермальных месторождений. К критическим замечаниям по несостоятельности теории В.Эммонса С.Смирнов относил, кроме отсутствия полной эволюционной зональности, ряд геологических признаков. Это пересечения разновозрастных жил разного состава, совмещение в пространстве высокотемпературных и низкотемпературных ассоциаций, брекчии и др. Согласно теории С.Смирнова состав металлов в каждой новой порции гидротермального раствора изменяется во времени, что приводит к последовательному формированию месторождений различного состава.

В настоящее время геологи признают разные типы и формы проявления зональности на гидротермальных месторождениях и относительно магматических источников рудоносных растворов. Так, В.И.Смирновым выделяются два рода первичной зональности гидротермальных рудных тел – зональность первого рода (стадиальная) и зональность второго рода (фациальная). Зональность стадиальная разделяется на зональность повторных тектонических разрывов, зональность тектонического раскрывания трещин, зональность внутрирудного метасоматоза. Зональность фациальная включает зональность состава пород, фильтрационную зональность, зональность отложения.

Вопрос 4. Ореолы рассеяния. Вмещающие породы вокруг гидротермальных рудных тел часто сопровождаются повышенным количеством рудообразующих металлов. Площади распространения таких пород называются ореолами рассеяния, которые могут быть первичными и вторичными.

Первичные ореолы образуются при формировании месторождений вследствие пропитывания вмещающих пород минерализованными гидротермальными растворами. Они представлены тонкой спорадической вкрапленностью рудообразующих минералов, которые рассеяны во вмещающих породах по периферии рудных тел и не всегда улавливаются визуально. Против натурального геохимического фона – кларка, содержание рудообразующих элементов повышено на несколько порядков и определяется по данным анализов проб, отбираемых при специальной металлометрической съемке.

Форма первичных ореолов, также как морфология зон гидротермально измененных пород, имеет вид чехла, облекающего рудные тела. Ореолы больше вытянуты вверх над рудными телами, чем в сторону от них. Они сопровождаются апофизами вдоль структур, благоприятных для оттока гидротермальных растворов (трещиноватости, разломов, зон дробления). Сводка данных (Э.Баранов, С.Григорян, Л.Овчинников) по вертикальной зональности химических элементов в первичных ореолах рассеяния гидротермальных месторождений свидетельствует о том, что одни металлы предпочтительнее занимают нижние подрудные части ореолов, другие – средние, а третьи – верхние надрудные. Это связано с различной подвижностью элементов в растворах. Единый ряд распределения типичных элементов в ореолах рассеяния (сверху вниз) представляется в следующем виде: Ba-Sb, Hg, Ag, Rb, Zn, Au, Cu, Vi, W, Mo, U, Sn, Co, Ni, Be. Этот универсальный ряд также как ряд Эммонса в полном виде не проявляется, но отдельные его звенья наблюдаются в природе. Причем существуют определенные наборы элементов для конкретных промышленных типов гидротермальных месторождений и по их составу можно прогнозировать различные уровни эрозионного среза этих месторождений, а также координировать направление поисков рудных тел.

Вторичные ореолы образуются при химическом разложении и механическом разрушении верхней части рудных тел в приповерхностной зоне, в связи с разносом рудного материала по поверхности земли. Среди них выделяются механические, водные, газовые, смешанные ореолы.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.147 сек.