Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 15: Структурный тип - Множество

End.

Begin

Repeat

Begin

Repeat

Begin

< тело процедуры - последовательность операторов процедуры >

end;

Раздел описаний процедуры содержит описание всех локальных имён, используемых в разделе операторов процедуры. Локальными называются имена, которые объявлены в данной процедуре (эти имена теряют свои значения при выходе из процедуры). Часто локальными именами являются вспомогательные переменные, необходимые для выполнения вычислений в процедуре, ими могут быть и другие процедуры или функции.

Раздел операторов процедуры может содержать любую последовательность операторов, выполняющих необходимое действие. В этих операторах могут использоваться как формальные параметры, так и локальные имена, а также глобальные имена, т.е. имена, описанные вне данной процедуры. Глобальные имена представляют

собой еще один механизм передачи параметров между процедурой и внешней средой.

Выполнение процедуры заканчивается либо при достижении слова end, завершающего раздел операторов, либо при выполнении оператора exit.

Вызов процедуры имеет следующую синтаксическую форму:

< имя процедуры > (< список фактических параметров >);

где фактические параметры перечисляются в списке через запятую.

Пример программы на Турбо Паскале, использующей процедуру:

program triangle1;{Программа, вычисляющая длины сторон треугольника АВС}

uses CRT;

type point = array [1..2] of real; {тип- точка на плоскости}

var A,B,C:point; {вводимые точки}

AB,BC,AC:real; {стороны треугольника}

ch:char;

procedure d(X,Y:point; var r:real);{ расстояние между точками X и Y }

begin r:= sqrt(sqr(X[1]-Y[1])+sqr(X[2]-Y[2])) end { d};

BEGIN TextBackground(cyan);TextColor(white);ClrScr;

window(10,5,60,10);TextBackground(green); ClrScr;

writeln(' Введите координаты вершин A,B,C:');

writeln('A[1] A[2] B[1] B[2] C[1] C[2] '); readln(A[1],A[2],B[1],B[2],C[1],C[2]);

writeln(' Длины сторон треугольника АВС:');d(A,B,AB);d(B,C,BC);d(A,C,AC);

writeln(' AB=', AB:2:2,' AC=', AC:2:2,' BC =', BC:2:2); readln(ch)

until ch=' ';

END {triangle1}.

3. Функции: описания и вызовы функций.

В отличие от процедур, функции не являются отдельными операторами. Функции возвращают значения (результат обращения к ним) и предназначены для использования в составе выражений или в качестве выражений. Это накладывает определенный отпечаток на синтаксическую структуру описания функций, которая имеет вид:

function < имя функции >[ (< список формальных параметров >) ]: < тип функции >;

< описание локальных имён >

< тело функции - последовательность операторов >

end;

В заголовке описания функции обязательно указывается тип вырабатываемого функцией результата, которым может быть любой простой тип Турбо Паскаля, а также строковый тип и тип указатель.

Другое отличие описания функции состоит в необходимости присутствия в теле функции хотя бы одного оператора присваивания, левой частью которого является имя функции. Смысл этого оператора - в присваивании функции некоторого результата как итога выполнения функции. Заметим, что имя функции не должно присутствовать в правой части операторов присваивания.

Список формальных параметров в описании функции обычно является списком аргументов функции, т.е. входных параметров-значений или параметров-констант.

Суть классического понятия функции состоит в том, чтобы однозначно отображать значение аргумента (или списка аргументов) на значение функции (результата). Именно такой смысл имеет функция в математике.

В языках программирования понятие функции приобретает, вообще говоря, более широкий смысл. Дело в том, что функция - некоторая подпрограмма, которая в процессе своего выполнения может не только вычислять результат функции от значений аргументов, но и производить некоторое дополнительное воздействие на окружающую среду (например, изменять значение некоторых глобальных переменных, выводить информацию в файлы и др.). Такое воздействие называют побочным эффектом вычисления функций.

Побочный эффект - весьма опасное явление, которое может приводить к трудно обнаруживаемым ошибкам. Поэтому хорошим стилем считается использование только функций без побочного эффекта (так называемых чистых функций). Если функция использует только параметры-значения и не использует глобальные имена, а также операторы вывода, вызова других подпрограмм, то это гарантирует отсутствие побочного эффекта. Впрочем, в некоторых случаях имеет смысл применять функции с побочным эффектом (например, для реакций на ошибки при вычислении значения функции).

Синтаксическая форма вызова функции аналогична вызову процедуры, т.е. включает имя функции и список фактических параметров, заключенный в круглые скобки. Различие лишь в том, что вызов функции есть выражение, а не отдельный оператор.

 

  Замечание   Используя так называемый расширенный синтаксис, можно вызывать функцию как процедуру (т.е. как оператор). Для включения расширенного синтаксиса имеется директива компилятора {$X+}. Это находит применение при инициализации динамических объектов.

 

Приведем пример программы triangle2, отличающейся от triangle1 тем, что вместо процедуры d использована функция dist:

 

program triangle2; {Программа, вычисляющая длины сторон треугольника АВС}

uses CRT;

type point = array [1..2] of real; {тип- точка на плоскости}

var A,B,C:point; {вводимые точки}

ch:char;

function dist(X,Y:point):real;{ расстояние между точками X и Y }

begin dist:= sqrt(sqr(X[1]-Y[1])+sqr(X[2]-Y[2]))

end { dist};

BEGIN TextBackground(cyan);TextColor(white);ClrScr;

window(10,5,60,10);TextBackground(green); ClrScr;

writeln(' Введите координаты вершин A,B,C:');

writeln('A[1] A[2] B[1] B[2] C[1] C[2] ');

readln(A[1],A[2],B[1],B[2],C[1],C[2]);

writeln(' Длины сторон треугольника АВС:');

writeln(' AB=',dist(A,B):2:2,' AC=',dist(A,C):2:2,' BC =',dist(B,C):2:2);readln(ch)

until ch=' ';

END {triangle}.

 

4. Особенности использования параметров в процедурах и функциях.

Параметры являются основным механизмом связи процедур и функций с вызывающей подпрограммой, поэтому важно иметь возможность использовать в качестве параметров широкий класс конструкций программы. Рассмотрим характерные особенности использования параметров в подпрограммах Турбо Паскаля, о которых полезно знать.

Параметры-массивы. При использовании массивов в качестве параметров необходимо учитывать одно ограничение при описании формальных параметров: типом любого формального параметра может быть только либо стандартный тип, либо тип, который объявлен ранее в вызывающей подпрограмме. Это означает, что нельзя использовать описание типа array непосредственно в списке формальных параметров. Например:

procedure state(m: array [1..8] of byte); {Неправильное описание параметра m}

type byte_st = array [1..8] of byte;

....

procedure state(m:byte_st); {Правильное описание параметра m}

Это ограничение, конечно, справедливо и для строк. Для строк также важно, что объявленные длины формального и фактического строкового параметра-переменной должны совпадать (это ограничение, правда, можно обойти, если отключить контроль совпадения длин строк с помощью опции компилятора {$V-}).

Нетипизированные параметры-переменные. Формальный параметр-переменная может быть описан без указания типа. Такой параметр называется нетипизированным. Соответствующий ему фактический параметр может быть переменной любого типа.

Этот случай полезен, если тип данных несущественен, например, при копировании данных из одной области памяти в другую. Нетипизированные параметры можно использовать также для передачи в подпрограммы одномерных массивов переменной длины (до 64 КБайт).

Параметры - открытые массивы. В качестве параметров подпрограмм можно использовать открытые массивы, т.е. одномерные массивы, указываемые без описания их размера (а только с указанием типа элементов). Открытые массивы позволяют передавать как параметры статические массивы любого размера.

Пример: program............

type array10 = array [0..9] of integer;

var vect:array10; res0,res:real;

.........

procedure compute(x: array of real; var r:real);

begin { тело процедуры compute }..... end;

BEGIN {раздел операторов основной программы}

.......................

compute([1.0, 2.0, 4.0, 8.0, 16.0], res0);...... compute(vect, res);

................

END.

Параметры-процедуры и параметры-функции. Процедуры и функции также могут быть параметрами других процедур или функций, что часто используется, особенно в задачах вычислительной математики. В Турбо Паскале имеется весьма гибкий механизм передачи процедур и функций в качестве параметра. Он основан на введении процедурных типов.

Процедурный тип - тип, представляющий семейство процедур или функций для их использования в программе. Как и любой тип Турбо Паскаля, процедурный тип должен быть описан, а затем может быть использован для работы с переменными процедурного типа (или константами). Описание процедурных типов имеет форму заголовка процедуры (или функции) с опущенным её именем:

type < имя процедуры-типа > = procedure (< список формальных параметров >);

type < имя функции-типа > = function (< список формальных параметров >): < тип >;

Например: type fun = function (x:real):real;

При описании подпрограммы с процедурными параметрами такие параметры указываются формальным именем и соответствующим процедурным типом.

Пример процедуры, использующей описанный выше процедурный тип fun:

procedure print_f (n:byte; f:fun);

const count = 20;

var X:real; j:integer;

begin window(n, 1, n+20, 25);

for j:=1 to count do begin X:=j*(2*pi/count);writeln(X:5:3, f(x):5:5) end

end {print_f};

В программе, где описаны процедурные типы, могут быть объявлены переменные этих типов, которым можно присваивать имена соответствующих подпрограмм, описанных в данной программе, либо эти имена можно использовать как константы при вызове подпрограмм с процедурными параметрами. Стандартные процедуры и функции нельзя непосредственно передавать таким способом, но их можно "подменить" подпрограммами с другими именами, как показано в следующем примере программы на Турбо Паскале:

program grid_functions; { Печать таблицы значений 2-х функций }

uses CRT;

type fun = function (x:real):real;

function sint(x:real):real; {функция sin(x) }

begin sint:=sin(x)

end {sint};

function expcos(x:real); {функция (cos(x)+1)*exp(-x)}

begin expcos:= (cos(x)+1)*exp(-x)

end {expcos};

procedure print_f (n:byte; f:fun); { печать значений функции f}

const count = 20;

var X:real; j:integer;

begin window(n, 1, n+20, 25);

for j:=1 to count do begin X:=j*(2*pi/count);writeln(X:5:3, f(x):5:5) end

end {print_f};

BEGIN {Основная программа} ClrScr;

print_f(1, sint); writeln;

print_f(30, expcos);writeln

END { grid_functions}.

5. Области действия имён в программах.

В программах, не использующих подпрограммы, имена, описанные в разделе описаний, действуют во всей программе, не вызывая каких-либо проблем. Совершенно иная ситуация имеет место, когда в программе используются подпрограммы. В подпрограммах могут использоваться свои локальные (внутренние) имена, и кроме того, она может также использовать глобальные (внешние) для неё имена из других подпрограмм или основной программы. Поскольку допустима иерархия подпрограмм в основной программе, необходимы чёткие правила действия имён в программах с подпрограммами. Рассмотрим эти правила, действующие в Турбо Паскале. Введём соответствующие определения.

Локальными именами подпрограммы называются те имена, которые описаны в этой подпрограмме (в её разделе описаний). Все остальные, используемые в подпрограмме имена, являются глобальными именами данной подпрограммы.

Правило действия локальных имён: все локальные имена доступны внутри подпрограммы и недоступны вне этой подпрограммы. Другими словами локальные имена теряют свои значения непосредственно при завершении подпрограммы. Пример: в процедуре print_f имена count, X, j - локальные имена.

Правило действия глобальных имён: все глобальные имена доступны внутри подпрограмм в том случае, если они отличны от локальных имён. В той же процедуре print_f глобальным именем является имя процедуры window (из модуля CRT).

Правило коллизии имён: Если локальные и глобальные имена (и типы) совпадают, то действует локальное имя, (оно "закрывает" такое же глобальное имя внутри подпрограммы).

Правило коллизии имён введено таким образом, что локальным объектам можно давать любые имена, не заботясь об их возможном совпадении с глобальными именами. Подпрограмму можно представлять как некоторый "черный ящик с полупрозрачными стенками ": для внешнего окружения она "черный ящик", а изнутри она прозрачна, так что "видит" всё внешнее окружение.

Формальные параметры подпрограммы локальны в этой подпрограмме, а фактические - глобальны.

Глобальные имена (не входящие в фактические параметры) в силу правила их действия могут выступать как ещё один механизм связи подпрограмм с внешним окружением (дополнительный к механизму параметров подпрограмм, который следует считать основным).

Однако при проектировании процедур по возможности следует использовать механизм параметров, поскольку он более структурированный и приводит к более понятным текстам программ. Если в подпрограмме используются одновременно и параметры и глобальные переменные, то это может быть свидетельством неудачно проведенной декомпозиции на подпрограммы: общее правило проектирования подпрограмм гласит, что подпрограмма должна иметь связи через минимальное число параметров или глобальных переменных. Впрочем, исключать использование глобальных переменных как самостоятельно, так и совместно с параметрами, конечно, нельзя.

 

6. Особенности разработки программ с подпрограммами на Турбо Паскале.

Практически все используемые прикладные программы - это программы с подпрограммами (процедурами и функциями). Подпрограммы, как уже указывалось, позволяют преодолевать сложность, обеспечивая декомпозицию программы на более простые составные части. Разработка программ на Турбо-Паскале с подпрограммами имеет ряд отличий от той методики, которая изложена выше применительно с простым программам. Эти отличия касаются как этапа разработки проекта, так и разработки алгоритма задачи. Остановимся на них несколько более детально.

При разработке проекта программы с подпрограммами обычно определяется и состав основных подпрограмм, предполагаемых для использования, хотя для программ с небольшим количеством подпрограмм состав подпрограмм часто определяется на этапе разработки алгоритма. В проекте программы состав основных подпрограмм может быть указан в разделе входных и выходных переменных, предназначенном также и для описания новых типов данных, используемых в этих переменных. В остальном проект программы с подпрограммами создается также, как и для программ без подпрограмм.

При разработке алгоритма на псевдокоде для программы с подпрограммами возможны две стратегии (или их сочетание).

Первая стратегия предполагает, что состав подпрограмм определяется раньше фактического использования этих подпрограмм в разделе операторов программы. Для таких подпрограмм вначале указывается их заголовок (в разделе описаний программы), возможно с необходимыми комментариями и возможно без расшифровки реализации этих подпрограмм. Затем в разделе операторов используются вызовы этих подпрограмм. Если тела подпрограмм ещё отсутствуют, то они создаются в процессе последующих уточнений.

Вторая стратегия предполагает, что вызовы подпрограмм использованы раньше, чем появилось описание подпрограмм (даже в виде заголовка). Эта стратегия естественна для случаев, когда состав подпрограмм не определён на этапе проекта программы, и подпрограммы "зарождаются" непосредственно при создании алгоритма задачи. Использование "опережающего" вызова предполагает, что после этого будет уточнен раздел описаний и в нём будет спроектировано тело подпрограммы.

Необходимо учесть также некоторые особенности проектирования подпрограмм по сравнению с обычными программами:

во-первых, заголовок подпрограммы, в отличие от заголовка программы, содержит, по сути, полную информацию о входных и выходных переменных подпрограммы в виде описания формальных параметров. Таким образом, заголовок подпрограммы выполняет функцию проекта подпрограммы, а именно разделов входных - выходных переменных и аномалий (поскольку аномалии следует отображать в виде специально предусмотренных параметров). Вся недостающая информация (например, функциональное назначение подпрограммы) может быть указана в комментариях заголовка подпрограммы.

во-вторых, многие подпрограммы непосредственно не используют операторы вывода на экран. В этих случаях нет необходимости в описании экранной формы.

Таким образом, при разработке подпрограмм во многих случаях нет необходимости в оформлении проекта подпрограммы иначе, чем в это предусмотрено в самом заголовке подпрограммы.

Методика разработки алгоритма подпрограммы не отличается от разработки алгоритма программы. Приведем пример разработки программы с функцией:

 

program letters; {проект}

1.Постановка задачи:

Для вводимой строки символов определить и вывести на экран все

повторяющиеся латинские буквы (не различая большие и малые буквы).

2. Входные и выходные переменные:

str: string; {входная строка}

j:char; {текущая латинская буква}

3. Аномалии:

if <отсутствуют повтор. латинские буквы> then ‘Нет повторяющихся букв’

4. Экранная форма:

‘Введите строку:’

<str>

‘Повторяющиеся буквы:’

[ {<j>}]

[ Нет повторяющихся букв]

program letters; {0.1}

{Нахождение повторяющихся латинских букв во вводимой строке}

var str: string;j:char;alfa:Boolean;

{0* function count(s: string;k:char):byte;}

{число вхождений символа k в строку s}

BEGIN writeln('Введите строку:');readln(str); writeln('Повторяющиеся буквы:');
alfa:=true; for j:='A' to 'Z' do if count(str,j)>1 then begin write(j,' ');alfa:=false end;

if alfa then writeln('Нет повторяющихся букв');writeln;

END.

 

program letters;{0.2}

{Нахождение повторяющихся латинских букв во вводимой строке}

var str: string;j:char;alfa:Boolean;

function count(s: string;k:char):byte;

var c,j:byte;

begin c:=0; for j:=1 to length(s) do

if upcase(s[j])=k then c:=c+1;count:=c

end {count};

BEGIN writeln('Введите строку:');readln(str); writeln('Повторяющиеся буквы:');
alfa:=true; for j:='A' to 'Z' do if count(str,j)>1 then begin write(j,' ');alfa:=false end;

if alfa then writeln('Нет повторяющихся букв');writeln;

END.

1. Понятие о типе Множество в Турбо Паскале.

2. Описание типа Множество и константы-множества.

3. Обработка множеств.

4. Примеры использования множеств.

1. Понятие о типе Множество в Турбо Паскале.

Множество является ещё одним структурным типом Турбо Паскаля, служащим для объединения однородных (однотипных) элементов. Однако форма объединения в Множество существенно отличается от типа Массив. Если в Массиве все элементы линейно упорядочены, то в Множестве - элементы неупорядочены. Понятие Множества в Паскале во многом похоже на конечное множество в дискретной математике и оказывается весьма удобным при решении многих задач управления, оптимизации, поиска и др. Паскаль - один из немногих языков программирования, поддерживающий тип Множество.

Множество в Паскале - набор элементов одного и того же типа (порядкового типа или типа-диапазона), причем порядок элементов безразличен. Отсутствие порядка элементов означает, что нет прямого доступа к элементу множества, однако можно непосредственно проверить входит ли некоторый элемент в данное множество.

Преимуществом типа Множество по сравнению с типом Массив является то, что множество может изменять количество своих элементов при выполнении программы, т.е. оно имеет черты динамической структуры в отличие от статического массива. Однако динамизм множеств лишь относительный: в Паскале количество элементов множества не может быть больше 256. Следовательно, не любой порядковый тип может быть типом элементов множества, а лишь такой, который содержит не более 256 элементов (например, нельзя использовать тип integer, однако можно использовать диапазоны от типа integer).

 

2. Описание типа Множество и константы-множества.

Формально тип Множество определяется в Паскале как тип, константами (значениями) которого являются все возможные подмножества из элементов базового типа, включая пустое множество. Базовым может быть порядковый тип или его тип-диапазон, содержащий не более 256 элементов, и каждый элемент которого имеет порядковый номер, не более 255. Описание типа Множество имеет форму:

type < имя типа-множества > = set of < базовый тип >;

Как и для других типов, для использования типа Множество необходимо вначале определить переменные этого типа. Например:

type primes = set of 1..200; {множество простых чисел до 200}

var pr1, pr2: primes; { переменные типа primes}

Константы типа Множество должны быть заключены в квадратные скобки (не путайте квадратные скобки для индексации элементов массива - которые всегда записываются только после имени массива, с квадратными скобками, выделяющими константы-множества!).

Одной из констант любого типа-множества является пустое множество, обозначаемое как []. Все другие константы-множества содержат один или более элементов, заключенных в общие квадратные скобки. Для образования констант-множеств используется конструктор множества - список спецификаций элементов множества, отделяемых запятыми и заключенный в квадратные скобки. Каждая спецификация может быть не только константой базового типа, но и произвольным выражением базового типа, а также типом-диапазоном этого же базового типа. Примеры конструкторов множеств:

[2] {множество из одного элемента 2}

[ 0, 2..5] {множество из элементов 0,2,3,4,5}

[1..200] {множество всех чисел базового типа 1..200}

Допускается использование обычных и типизированных констант-множеств, описание которых осуществляется с помощью конструктора множеств. Например:

const initset: set of 0..16 = [0,1,2,4,8,16]; const range=[2..100];

3. Обработка множеств.

Над множествами Паскаля определены теоретико-множественные операции и отношения.

Операции над множествами:

+ операция объединения множеств, результатом её является множество, содержащее элементы множеств-операндов и только их.

Например:[2] + [2..5] даёт множество [2..5];

* операция пересечения множеств, результатом её является множество, содержащее только элементы, общие для множеств-операндов (т.е. входящие во все множества-операнды);

Например: [1..200] *[0,2..5] даёт множество [2..5];

- операция разности множеств, результатом её является множество, содержащее элементы множества-первого операнда и не содержащее элементы множества-второго операнда;

Например: [1..200] - [0,2..5] даёт множество [1, 6..200];

Отношения над множествами - бинарные отношения, имеющие применительно к множествам смысл эквивалентности (неэквивалентности) и включения одного множества в другое.

Два множества считаются эквивалентными, если они имеют одинаковые элементы (порядок перечисления элементов безразличен).

Множество А включено в множество В, если все элементы из А являются также элементами множества В.

= проверка эквивалентности, даёт true, если оба множества эквиваленты и false - в противном случае. Например: [1..3] =[3,1,2] - даёт true.

<> проверка неэквивалентности, является отрицанием эквивалентности.

Например: [1..3] <> [3,2,1] - даёт false.

<= проверка включения левого операнда в правый, даёт true, если такое включение имеет место и false - в противном случае.

Например: [5] <= [1..5] - даёт true, а [0] <=[1..5] - даёт false.

>= проверка включения правого операнда в левый, даёт true, если такое включение имеет место и false - в противном случае.

Кроме отношений эквивалентности и включения имеется ещё отношение принадлежности элемента множеству. Это отношение имеет структуру:

< выражение базового типа > in < множество над этим базовым типом >

Данное отношение дает значение true, если первый операнд является элементом множества - второго-операнда и false - в противном случае.

Например: 3 in [1..5] - даёт true, а 0 in [1..5] - дает false.

Рассмотренные операции и отношения составляют основной набор средств для обработки множеств в программах. Они могут использоваться либо для построения условий, либо - непосредственно в операторах программы. Используя переменные, конструкторы, операции и отношения можно строить выражения типа множества. Для таких выражений допустимы операторы присваивания вида:

< переменная типа-множество >:= < выражение типа-множество >;

Например: pr1:= pr2; {копирование множества pr2 в pr1}

pr1:= []; {присваивание pr1 пустого множества}

pr1:= [1..200];{присваивание pr1 множества элементов от 1 до 200}.

Оператор присваивания совместно с операцией объединения или вычитания позволяет включать или исключать элементы из множества:

set1:=set1 + [a]; {включение элемента а в множество set1}

set2:= set2 - [d]; {исключение элемента d из множества set2}

Эти же действия выполняют стандартные процедуры include(set1,a) и exclude(set2,d) соответственно.

4. Примеры использования множеств.

Рассмотрим примеры программ на Турбо Паскале с использованием множеств, иллюстрирующие технику обработки множеств.

 

program lat_letters;{Определение множества латинских букв в строке}

uses CRT;

var s: string; {исходная строка}

lat: set of 'A'..'Z'; {множество лат.букв}

k:char; j:byte;

begin TextBackground(cyan);TextColor(white);ClrScr;

repeat writeln('Введите строку');readln(s);

if s='' then writeln('Ошибка: пустая строка');

until s<>'';lat:=[]; for j:=1 to length(s) do if upcase(s[j]) in ['A'..'Z'] then

lat:=lat+[upcase(s[j])]; if lat=[] then writeln('В строке нет латинских букв') else

begin writeln('Латинские буквы:'); for k:='A' to 'Z' do if k in lat then write(k,' ') end;

end { lat_letters}.

 

program sieve; {Решето Эратосфена - генератор простых чисел <= N}

const N=100;

uses CRT;

var next:integer; {Следующее простое число}

start,prim: set of 1..N; {Исходное множество и множество простых чисел}

k,j:integer;

begin TextBackground(cyan);TextColor(white);ClrScr;

start:=[2..N];prim:=[1];next:=2;

{Формирование в prim множества простых чисел до N}

while start<>[] do begin k:=next; while k<=N do

begin start:=start-[k];k:=k+next end; prim:=prim+[next];

repeat next:=next+1

until (next in start) or (next>N);

end; {Вывод чисел из множества prim}

writeln('Простые числа до ',N,':'); for j:=1 to N do

if j in prim then write(j:3,' ');writeln;

end {sieve}.

Использование множеств в ряде случаев позволяет получать более простые тексты программ, "маскирующие" дополнительные циклы обработки. Например, в программе lat_letters таким "замаскированным циклом" является условие upcase(s[j]) in ['A'..'Z'], которое при отсутствии множеств, потребовало бы для реализации функцию с циклом по типу-диапазону 'A'..'Z'.

<== предыдущая лекция | следующая лекция ==>
Лекция 11: Структурный тип - Строка | 
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 320; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.