Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические и логические принципы работы компьютера. Базовые логические операции. Принцип выполнения программ




Представление информации в технических устройствах

В основу любого устройства, предназначенного для преобразования или хранения информации, должен быть положен принцип ее представления, то есть ее физический носитель.

Вычислительные устройства, использующие непрерывную форму представления информации, называются аналоговыми вычислительными машинами (АВМ). Вычислительные устройства, использующие дискретную форму представления, называются цифровыми вычислительными машинами (ЦВМ).

В настоящее время устройства, использующие непрерывный способ представления информации, вытесняются более прогрессивными цифровыми устройствами, даже из таких традиционно «аналоговых» областей, как телевидение и телефония. Развитие вычислительных систем, начавшееся преимущественно с АВМ, постепенно перешло к ЦВМ и к середине 70-гг. прошлого столетия ЦВМ полностью вытеснили АВМ.

АВМ имели блочную структуру, т.е. представляли собой систему связанных между собой базовых элементов. Связи между базовыми элементами, их состав и количество изменялись для каждой задачи. В качестве базового элемента использовался операционный усилитель (рис. 2.1.1.):

 

 

       
   
 
E1
 

 


Uвх1

>
. Uвых

.

.

 
 
En


Uвхn

Рис. 2.1.1. Операционный усилитель

 

В качестве элементов используются радиоэлектронные компоненты: резисторы, конденсаторы, индуктивности. В зависимости от типов элементов, базовый элемент может производить сложение, интегрирование, дифференцирование и некоторые другие операции над входными напряжениями (Uвх1, …, Uвхn), результат операции снимается в виде выходного напряжения (Uвых).

ЦВМ имеют гораздо более высокую сложность аппаратной и программной реализации. Информация в них имеет определенные границы представления, т.е. точность представления информации конечна. Для расширения границ представления необходимо увеличивать аппаратную часть или увеличивать время обработки. Основными достоинствами ЦВМ являются:

- Гарантированная точность результата, зависящая только от границ представления данных;

- Универсальность – способность обрабатывать данные любыми методами, представляемыми последовательностью простых арифметических и логических операций;

- Возможность реализации большого числа известных численных, математических методов решения задач.

Люди, далекие от техники, часто смотрят на ЭВМ и др. цифровые электронные устройства, как на нечто таинственное и непостижимое. Тем не менее, все эти устройства работают в строгом соответствии с четкими логическими законами. Знание и понимание этих законов помогает в общении с компьютером.

В основе всех выводов компьютера лежат три основные операции: «И», «ИЛИ», «НЕ». Иногда эти операции называют «тремя китами машинной логики».

При записи логических выражений используется специальный язык, который принят в машинной логике. Основоположником мат. Логики является великий немецкий математик Готфрид Вильгельм Лейбниц. Он сделал попытку построить универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычислений. На заложенном Лейбницем фундаменте ирландский математик Джордж Буль построил здание новой науки – математической логики (Алгебры логики), которая в отличие от обычной алгебры оперирует не числами, а высказываниями. В честь Д. Буля логические переменные в языке программирования Паскаль в последствии назвали булевскими.

Высказывание - это любое утверждение, относительно которого можно сказать истинно оно или ложно, т.е. соответствует оно действительности или нет. Таким образом, по своей сути высказывания фактически являются двоичными объектами и поэтому часто истинному значению высказывания ставят в соответствие 1,а ложному - 0. Например, запись А=1 означает, что высказывание А - истинно.

Высказывания могут быть простыми и сложными. Простые -соответствуют алгебраическим переменным, а сложные являются аналогом алгебраических функций. Функции могут получаться путем объединения перемещенных с помощью логических действий.

Самой простой логической операцией является операция «НЕ» (по другому её часто называют отрицанием, дополнением или инверсией и обозначают NOT X). Результат отрицания всегда противоположен значению аргумента.

Логическая операция «НЕ» является унарной, т.е. имеет всего один операнд. В отличие от «НЕ», операции «И» (AND) и «ИЛИ» (OR) являются бинарными, т.к. представляют собой результат действий над двумя логическими величинами.

Логическое «И» ещё часто называют конъюнкцией, или логическим умножением, а «ИЛИ» – дизъюнкцией, или логическим сложением. Часто в ВТ используют дополнительную логическую операцию “исключающее ИЛИ”(X XOR Y), которая отличается от «ИЛИ» только при X=1, Y=1.

 

X NOT X
   
   

 

 

X Y X and Y X or Y X xor Y
         
         
         
         

 

 

Операция «И» имеет результат “истина” только в том случае, если оба операнда истинны.

Операция «ИЛИ» “менее привередлива” к исходным данным. Она дает “истину” если значение “истина” имеет хотя бы один из операндов. В случае, когда справедливы оба аргумента одновременно, результат также истинный. В таблицах истинности указаны все возможные комбинации логических переменных Х и У, а также соответствующие им результаты операций. Таблица истинности может рассматриваться в качестве одного из способов задания логической функции.

Операции «И», «ИЛИ», «НЕ» образуют полную систему логических операций, из которых можно построить сколь угодно сложное логическое выражение.

Обработка информации в ЭВМ происходит путём последовательного выполнения элементарных операций. К ним относятся: установка - запись в операционный элемент(например, регистр) двоичного кода: прием- передача (перезапись) кода из одного элемента в другой; сдвиг- изменение положения кода относительно исходного; преобразование- перекодирование; сложение- арифметическое сложение или целых двоичных чисел- некоторые другие. Для выполнения каждой из этих операций сконструированы электронные узлы, являющиеся основными узлами цифровых вычислительных машин- регистры, счетчики, сумматоры, преобразователи кодов и т.д.

В основе каждой из элементарных операций лежит некоторая последовательность логических действий. Например, операция сложения двух чисел: 3+6. Имеем:

+110

 
 


 

На каждом элементарном шаге двум двоичным цифрам сопоставляется двоичное число (одно или двухзначное) по правилам: (0;0) 0, (0;1) 1, (1;0) 1, (1;1) 10. Таким образом, сложение цифр можно описать логической бинарной функцией. Если дополнить это логическим правилом переноса единицы в старший разряд, то сложение полностью сведется к цепочке логических операций.

Рассмотрим условные обозначения базовых логических элементов.

 
 
=1  
 

 
a a a + b a a a + b

b

b b b

 

« И » « ИЛИ» «НЕ» «X ИЛИ»

Простейшие логические элементы можно реализовать аппаратно. Это означает, что можно создать электронные устройства на транзисторах, резисторах и т.п, каждая из которых имеет один или два входа для подачи управляющих напряжений и один выход, напряжение на котором определяется таблицей истинности. На практике логическому ”да” (”истина”, или цифра 1) соответствует наличие напряжения, логическому “нет” (”ложь”, или цифра 0) – его отсутствие.

В качестве примера применения логических элементов в ВТ возьмем устройство, называющееся сумматором. Его назначение - нахождение суммы двух двоичных чисел. Рассмотрим простейшее устройство, являющееся звеном сумматора – полусумматор - реализующий сложение двух одноразрядных двоичных чисел, которые обозначим А и В. В результате получается двухразрядное двоичное число. Его младшую цифру обозначаем S, а старшую, которая при сложении многоразрядных чисел будет перенесена в старший разряд, через Со (от английского Carry out-”выходной перенос”).

Обе цифры можно получить по следующим логическим формулам:

S= (* B) + (A* ); Co = A* B.

Черта над символом обозначает операцию NOT.

Это легко проверить перебором всех четырех возможных случаев сочетания значений А и В, по таблице.

Таблица истинности для полусумматора.

 

A B S Co
       
       
       
       

 

Мысленно объединим столбцы А, В и Со. Полученная таблица напоминает базовый элемент «И».

Аналогично сравнив первые три столбца A, B и S с таблицей истинности для рассмотренных логических элементов, обнаружением подходящий для наших целей элемент «исключающее ИЛИ”. Таким образом, для реализации полусумматора достаточно соединить параллельно входы двух логических элементов.

 

Логическая схема полусумматора.

       
   


 
В

&

A A

&
 

 
A+B = S

&  
B

 

 

Co

 

А) с использованием лишь базовых логических элементов.

 

=1  
A

S

B

 
 
&  


Co

       
   

 


Б) с использованием “исключающего ИЛИ”.

 

При построении функциональных узлов КС используются элементы, которые реализуют базовую систему логических функций. Одним из таких базовых наборов является набор из трех функций: дизъюнкции (логическое ИЛИ), конъюнкции (логическое И) и отрицание (логическое НЕ). На рис. 2.1.2. показаны условные обозначения и значения выходного сигнала в зависимости от входных сигналов. Ноль изображается на диаграммах низким значением сигнала, а единица – высоким. Используя эти базовые элементы, строятся все функциональные узлы ЦВМ.

 

&
 
x1 x1

y y x y

x2 x2

 

«логическое ИЛИ» «логическое И» «логическое НЕ»

 

 

Рис. 2.1.2. Базовая система логических элементов цифровых устройств




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 857; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.