Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Химические свойства. Карбоновые кислоты – более сильные кислоты, чем спирты, поскольку атом водорода в карбоксильной группе обладает повышенной подвижностью благодаря влиянию

Карбоновые кислоты – более сильные кислоты, чем спирты, поскольку атом водорода в карбоксильной группе обладает повышенной подвижностью благодаря влиянию группы –СО. В водном растворе карбоновые кислоты диссоциируют:

Тем не менее, из-за ковалентного характера молекул карбоновых кислот указанное выше равновесие диссоциации достаточно сильно сдвинуто влево. Таким образом, - карбоновые кислоты – это, как правило, слабые кислоты. Например, уксусная кислота характеризу­ется константой диссоциации Ка = 1,7*10-5.

Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими ин­дуктивного эффекта. Такие заместители, как хлор или фенильный радикал, оттягивают на себя электронную плотность и, следователь­но, вызывают отрицательный индуктивный эффект (–I). Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эф­фект (+I). Они понижают кислотность.

Взаимное влияние атомов в молекулах дикарбоновых кислот при­водит к тому, что они являются более сильными, чем одноосновные.

1. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными металла­ми, основными оксидами, основаниями и солями слабых кислот:

Карбоновые кислоты – слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей:

Соли карбоновых кислот в водных растворах гидролизованы:

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

2. Образование функциональных производных карбоновых ки­слот. При замещении группы ОН в карбоновых кислотах различ­ными группами (X) образуются функциональные производные кислот, имеющие общую формулу R–CO–X; здесь R обозначает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R–CN), обычно их также рассматривают как производные карбоновых кислот, поскольку они могут быть по­лучены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V) на ки­слоты:

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

Сложные эфиры образуются при нагревании кислоты со спиртом в присутствии серной кислоты (обратимая реакция этерификации):

Механизм реакции этерификации установлен методом «меченых атомов».

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

Кроме того, амиды могут быть получены при нагревании аммо­нийных солей карбоновых кислот:

Реакции хлорангидридов карбоновых кислот с аммиаком приво­дят к образованию амидов:

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов:

Функциональные производные низших кислот – летучие жидко­сти (за исключением амидов, которые при обычных условиях – твердые вещества). Все они гидролизуются с образованием исход­ной кислоты:

В кислой среде эти реакции могут быть обратимы. Гидролиз в ще­лочной среде необратим и приводит к образованию солей карбоно­вых кислот, так:

3. Ряд свойств карбоновых кислот обусловлен наличием углево­дородного радикала. Так, при действии галогенов на кислоты в при­сутствии красного фосфора образуются галогензамещенные кисло­ты, причем на галоген замещается атом водорода при соседнем с карбоксильной группой атоме углерода (α-атоме):

Непредельные карбоновые кислоты способны к реакциям при­соединения:

Две последние реакции протекают против правила Марковникова,

Непредельные карбоновые кислоты и их производные способны к реакциям полимеризации:

4. Окислительно-восстановительные реакции карбоновых кислот.

Карбоновые кислоты при действии восстановителей в присутст­вии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды:

Насыщенные карбоновые кислоты устойчивы к действию кон­центрированных серной и азотной кислот. Исключение составляет муравьиная кислота:

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

Муравьиная кислота – сильный восстановитель и легко окисляется до СО2. Она дает реакцию «серебряного зеркала»:

или в упрощенном виде:

Кроме того, муравьиная кислота окисляется хлором

В атмосфере кислорода карбоновые кислоты окисляются до СО2 и Н2О:

5. Реакции декарбоксилирования. Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С-С при на­гревании декарбоксилируются с трудом. Для этого необходимо сплав­ление соли щелочного металла карбоновой кислоты со щелочью:

Появление электронодонорных заместителей в углеводородном радикале способствует реакции декарбоксилирования:

Двухосновные карбоновые кислоты легко отщепляют СО2 при нагревании:

<== предыдущая лекция | следующая лекция ==>
Получение. 1. Окисление первичных спиртов – общий способ получения карбоновых кислот | Применение. Насыщенные кислоты. Муравьиная кислота НСООН
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 478; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.