Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи оптимизации




Тема №9

Метод 36

Неявная разностная схема для уравнения теплопроводности.

 

τ
h
h
i-1
i+1
i
j

 

 

 

 

 

Подставим в уравнение теплопроводности:

 

 

 

 

 

Это соотношение записывается для каждого внутреннего узла на временном уровне и дополняется двумя соотношениями, определяющими значения в граничных узлах. В результате получается система уравнений для определения неизвестных значений функции на временном уровне.

Схема решения задачи следующая:

С помощью начальных и граничных условий находится значение функции на нулевом временном уровне. Затем с помощью этих соотношений и граничных условий строится система линейных алгебраических уравнений для нахождения значения функции на первом временном уровне, после чего опять с помощью этих соотношений строится система, и находятся значения на втором временном уровне и т.д.

Отличие от явной схемы - значения на очередном временном уровне вычисляются не непосредственно с помощью готовой формулы, а находится путем решения системы уравнений, т.е. значения неизвестных находятся неявно путем решения СЛАУ. Поэтому разностная схема называется неявной. В отличие от явной неявная является абсолютно устойчивой.

 

Эти задачи являются одними из важнейших задач прикладной математики. Под оптимизацией понимают выбор наилучшего варианта из всех возможных решений данной задачи. Для этого необходимо сформулировать решаемую задачу как математическую, придав количественный смысл понятиям лучше или хуже. Обычно в процессе решения необходимо найти оптимизируемые значения параметров. Эти параметры называют проектными. А число проектных параметров определяет размерность задачи.

Количественная оценка решения производится с помощью некоторой функции зависящей от проектных параметров. Эта функция называется целевой. Она строится таким образом, чтобы наиболее оптимальное значение соответствовало максимуму(минимуму).

- целевая функция.

Наиболее просты случаи, когда целевая функция зависит от одного параметра и задаётся явной формулой. Целевых функций может быть несколько.

Например, при проектировании самолёта требуется одновременно обеспечить максимальную надежность, минимальные вес и стоимость и т.д. В таких случаях вводится система приоритетов. Каждой целевой функции ставится в соответствие некоторый целевой множитель в результате получается обобщенная целевая функция(функция компромиссов).

Обычно оптимальное решение ограничено рядом условий связанных с физической функцией задачи. Эти условия могут иметь вид равенств или неравенств

 

Теория и методы решения задач оптимизации при наличии ограничений составляют предмет исследований одного из разделов прикладной математики – математического программирования.

Если целевая функция линейна относительно проектных параметров и ограничения, накладываемые на параметры также линейны, то возникает задача линейного программирования. Рассмотрим методы решения одномерной задачи оптимизации.

Требуется найти значения на при которых целевая функция имеет максимальное значение. Если целевая функция задана аналитически и может быть найдено выражение для её производных, то оптимальное решение будет достигаться либо на концах отрезка, либо в точках в которых производная обращается в ноль. Это критические точки и. Необходимо найти значения целевой функции во всех критических точках и выбрать максимальное.

В общем случае для нахождения решения применяют различные методы поиска. В результате происходит сужение отрезка содержащего оптимальное решение.

Рассмотрим некоторые из методов поиска. Предположим, что целевая функция на промежутке имеет один максимум. В этом случае, разбив узловыми точками, число которых, вычисляют целевую функцию в этих узловых точках. Предположим, что максимальное значение целевой функции будет в узле, тогда можно считать, что оптимальное решение находится на интервале. В результате произведено сужение отрезка, содержащего оптимальное решение. Полученный новый отрезок вновь разбивают на частей и т.д. При каждом разбиении отрезок, содержащий оптимальное решение уменьшаются в раз.

Предположим, что произведено шагов сужения. Тогда исходный отрезок уменьшается в раз.

То есть, делаем пока выполняется (*)

При этом производится вычислений целевой функции.

Требуется найти такое значение, чтобы выражение (*) было получено при наименьшем

числе вычислений.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 339; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.