Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Деление двоичных чисел, представленных в форме с фиксированной запятой




Деление двоичных чисел

 

Деление двоичных чисел во многом аналогично делению десятичных чисел.

В универсальных вычислительных машинах, как правило, реализуется "школьный" алгоритм деления чисел. "Школьный" алгоритм деления заключается в том, что делитель на каждом шаге вычитается из делимого столько раз (начиная со старших разрядов), сколько это возможно для получения наименьшего положительного остатка. Тогда в очередной разряд частного записывается цифра, равная числу делителей, содержащихся в делимом на данном шаге. Иначе говоря, при делении операцию вычитания повторяют до тех пор, пока уменьшаемое не станет меньше вычитаемого. Число этих повторений показывает, сколько раз вычитаемое укладывается в уменьшаемом.

 

 

Например:

разделим число 35 на 7:

1) 35 - 7 = 28, 2) 28 - 7 = 21, 3) 21 - 7 = 14, 4) 14 - 7 = 7, 5) 7 - 7 = 0.

Ответ равен 5, т.к. процедура вычитания была повторена 5 раз.

 

Рассмотрим еще один пример:

разделим 204(10) на 12(10), т.е. 11001100(2):1100(2):

 

делимое 11001100 | 1100 - делитель

делитель 1100 | 10001

остаток 00001

- 0

- 0

- 0

- 1100

 

Двоичное, как и десятичное деление, начинается с анализа делимого (11001100) и делителя (1100). Сразу же обнаруживается, что делитель укладывается в 1100, а поэтому записывается 1 в старший разряд поля частного. Умножается делитель на 1 и вычитается из 1100, разность равна 0. Объединяется 0 остатка со значением следующего разряда делимого, равным 1. Поскольку делитель (1100) 0 раз укладывается в 1, записываем 0 в следующий по старшинству разряд поля частного, а число 1 объединяется со следующим разрядом делимого и т.д. до тех пор, пока делимое не оказывается исчерпанным.

Конечно компьютер не может строить догадок относительно того, сколько раз делитель укладывается в том или ином числе, поэтому весь процесс деления сводится к операциям вычитания и сдвига. Продемонстрируем на том же примере, но сначала делитель (1100) представим в дополнительном коде, что позволит ограничиться сложением во всех случаях, когда нужно выполнять сложение или вычитание: 1100пр = 1. 0100д. Частное формируется в некотором регистре С, незаполненные разряды которого будем обозначать через Х.

Начинаем вычитать делитель из делимого. Если остаток получается положительным, то в разряд частного записывается 1, в противном случае - 0.

 

0. 11001100 делимое 204

+ 1. 01000000 делитель 12

0. 00001100 первый остаток

 

Первый (старший) бит частного равен 1, т.к. остаток получился положительным: С = 1ХХХХ. Далее сдвигается первый остаток на один разряд влево и из него вычитывается делитель:

 

0. 00011000

+ 1. 01000000

1. 01011000 второй остаток

 

Остаток отрицательный, поэтому в следующий разряд частного записывается 0, С = 10ХХХ. Кроме того необходимо биты делителя вернуть обратно первому остатку, т.е. сложить делитель (в прямом коде) и второй остаток:

 

1. 01011000

+ 0. 11000000

0. 00011000 сдвинутый первый остаток.

Далее еще раз сдвигается сдвинутый первый остаток на один разряд влево и вычитается из него делитель:

 

0. 00110000

+ 1. 01000000

1. 01110000 третий остаток

 

Третий остаток отрицательный, значит следующий (третий) разряд частного равен 0, С = 100ХХ. Поэтому возвращаем делитель третьему остатку,

 

1. 01110000

+ 0. 11000000

0. 00110000 дважды сдвинутый первый остаток

 

Сдвигаем дважды сдвинутый первый остаток на один разряд влево и вычитаем делитель:

 

0. 01100000

1. 01000000

1. 10100000 четвертый остаток

 

Четвертый остаток опять отрицательный, поэтому С = 1000Х. Прибавляем делитель к четвертому остатку, результат сдвигаем на один разряд влево, а затем вновь вычитаем делитель:

 

0. 1100000 первый остаток после четвертого сдвига

+ 1. 0100000

0. 0000000 пятый остаток

 

Остаток положительный, значит С = 10001 = 17(10) - это и есть ответ.

Такой метод деления называется делением с восстановлением остатка.

Деление чисел, представленных в форме с фиксированной запятой можно также осуществить на двоичных сумматорах обратного и дополнительного кода.

Перед выполнением самой процедуры деления чисел в формате с фиксированной запятой определяется и запоминается знак частного. Далее оба операнда представляются в прямом коде, а делитель еще и в дополнительном для того, чтобы вычитание делителя заменить сложением, и выполняется сама процедура деления по описанному выше методу с обязательным контролем переполнения разрядной сетки. Если знак частного отрицательный, то ответ, при необходимости, представляется в дополнительном коде.

Например: разделим 35 на 5. 3510 = 0.1000112, 510 = 1012, 5д = 1.011д

(в регистре С, как и в предыдущем примере, формируется частное):

0.100011

+ 1.011000

1.111011 С = 0 восстанавливаем остаток до делимого.

+ 0.101000

0.100011 сдвигаем влево остаток.

1.00011

+ 1.01100

0.01111 С = 01, сдвигаем влево остаток.

0.1111

+ 1.0110

0.0101 С = 011, сдвигаем остаток.

0.101

+ 1.011

0.000 С = 0111 = 710

Вычитание делимого продолжают столько раз, сколько разрядов отведено для частного.

 

Метод деления без восстановления остатка. Как уже отмечалось, основой выполнения деления является операция вычитания с целью получения остатка, знак которого определяет цифру частного. Алгоритм выполнения деления имеет следующий вид:

X - Y = a0,

 

где a0 - это остаток. Если а0 0, то С = 1, если а0 < 0, то С = 0. Для определения следующей цифры частного необходимо выполнить следующие действия: при а0 0 надо 2а0 - Y = a1, а при а0 < 0 надо 2а0 + Y = a1. Как видно в данном случае знак остатка определяет не только очередную цифру частного, но и характер следующей процедуры: прибавления делителя к сдвинутому остатку, если этот остаток меньше 0, и вычитание делителя из сдвинутого остатка, если остаток больше или равен 0. Этот метод деления получил название деления без восстановления остатка.

Рассмотрим пример:

разделим 3510 на 510, т.е. 0.1000112 на 1012

0.100011

+ 1. 011000 дополнительный код 5 (т.е. вычитание 5)

1.111011 a0<0, С = 0

2a0 1.110110

+ 0.101000 5 в прямом коде

0.011110 a1>0, С = 01

2a1 0.111100

+ 1.011000 5 в дополнительном коде (т.е. вычитание 5)

0.010100 a2>0, С = 011

2a2 0.101000

+ 1.011000

0.000000 a3 = 0, С = 0111 = 710

 

4.3.2. Деление двоичных чисел, представленных в форме с плавающей запятой.

 

При операции деления чисел, представленных в форме с плавающей запятой их мантиссы делятся, как числа с фиксированной запятой, а порядки вычитываются. В обоих случаях проверка на переполнение обязательна. Но, т.к. реально вычитываются характеристики чисел, то деление выполняется по следующей формуле:

 

A1: A2 = m12: m22= (m1: m2)2.

 

Знак ответа определяется обычным образом. Если ответ получился ненормализованный, то выполняется процедура нормализации и округления ответа.

Т.к. мантиссы операндов нормализованы, то возможны случаи, когда

|mA| |mB|; |mA| < |mB|. В первом случае перед началом деления надо вычесть делитель из делимого и в целую часть мантиссы частного записать 1. Затем продолжать делить числа обычным методом. После получения частного очевидно, что оно не будет нормализованным. Значит надо нормализовать частное, т.е. в данном случае сдвинуть его на 1 разряд вправо, а к порядку частного добавить 1.

Напомним, что при реализации алгоритмов математических операций в формате с плавающей запятой каждый раз, когда осуществляется та или иная процедура, затрагивающая характеристики операндов или результата, производится контроль над переполнением и исчезновением порядка, т.е. контролируется условие

0 r r max,

 

где r max = l + p max.

Рассмотрим пример:

A = 10 = 0,1010, pA = 4, B = 2 = 0,1, pB = 2. p = pA - pB = 2. mA = 0.1010,

mB = 0.1, (mB)l = 1.1000. |mA| > |mB|. При первом вычитании mB из mA 1 записываем в целую часть частного:

0.1010

+ 1.1000

а0 0.0010 С = 1,XX, далее, будем делить методом деления без восстановления остатка.

2а0 0.0100

+ 1.1000

а1 1.1100 а1<0 С = 1,0

2a1 1.1000

+ 0.1000

0.0000 a2 = 0 С = 1,01, сдвигаем вправо С = 0,101, p = p + 1 = 3.

 

В завершение обзора принципов организации арифметических действий с двоичными числами нужно отметить, что в Главе 11 подробно рассмотрены все алгоритмы арифметических процедур с числами в формах с фиксированной и плавающей запятой.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 5858; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.