Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Управление монитором

Основные технические характеристики.

Дисплей может быть изготовлен с использованием различных физических принципов: электронно-лучевые трубки, газоплазменные панели, жидкокристаллические индикаторы и другие приборы.

Электронно-лучевая трубка (ЭЛТ) по-английски сокращенно называется CRT (Cathode Ray Tube — катодно-лучевая трубка).

Монитор содержит только ЭЛТ с видеоусилителями сигналов яркости лучей, генераторы разверток, блок питания и схемы управления этими узлами. Традиционный телевизионный монитор имеет низкочастотный вход композитного видеосигнала (UYV) или (и) раздельные входы модуляции лучей и рассчитан на работу в стандартах PAL, SECAM или NTSC, определяющих способы цветопередачи и фиксирующих частоты синхронизации.

Монитор компьютера должен обеспечивать существенно более широкую полосу пропускания видеосигнала, поэтому композитный вход для него неприемлем. Кроме того, этому монитору приходится работать с разными параметрами синхронизации, которые зависят от выбранного режима разрешения и требований к развертке. Параметры синхронизации могут меняться в процессе работы, и компьютерный монитор должен отрабатывать эти переключения режимов.

В монохромных мониторах экран трубки покрыт однородным слоем мелкозернистого люминофора, который при хорошей фокусировке луча дает высокую четкость и разрешающую способность, фактически определяемую лишь параметрами генераторов разверток. В цветных мониторах люминофор неоднороден — имеются три типа частиц, каждый из которых дает свечение своим базисным цветом. Соответственно имеются три электронные пушки, каждая из которых «обстреливает» только свои частицы люминофора. Лучи всех трех пушек синхронно сканируют экран. Управляя интенсивностью каждого из лучей, получают требуемый цвет изображения каждой точки.

Существует ряд технологий ЭЛТ, различающихся способом наведения лучей на свои частицы люминофора. Эти способы наведения лучей определяются типами различных масок.

Классической является ЭЛТ с теневой маской (Shadow Mask). Ее экран покрывается не сплошным люминофором, а отдельными зернами-триадами. Каждое зерно состоит из трех крупиц люминофора, которые при попадании на них потока электронов светятся базисными цветами. Крупицы триад имеют строго фиксированное относительное расположение, и сами триады наносятся на поверхность в виде равномерной матрицы (Рис5.1). Крупицы каждого цвета «обстреливаются» из отдельной электронной пушки через теневую маску с отверстиями, соответствующими зернам матрицы.

Точность попадания лучей в свои крупицы обеспечивается тщательностью изготовления кинескопа и настройкой системы сведения лучей. Шаг матрицы зерен экрана — Dot Pitch — принято измерять в миллиметрах. В первом приближении можно считать, что он совпадает и с размером зерна.

В ЭЛТ со щелевой маской. (Slot Mask) вместо отверстий в маске имеются вертикальные щели, а форма пятен цветного люминофора иная.

В ЭЛТ с апертурной решеткой (Apperture Grilles) люминофор нанесен на вертикально расположенные нити (каждая нить своего цвета), выстроенные частоколом. Маска у них щелевая.

Технические характеристики.

В настоящее время распространены мониторы классов VGA и SVGA, имеющие аналоговый интерфейс. Мониторы VGA, допускающие работу в режиме 640 х 480, вытеснены мониторами класса SVGA, которые должны поддерживать по крайней мере режим 800 х 600.

· Главным параметром монитора является размер диагонали экрана (Screen Size), который принято измерять в дюймах. По умолчанию считается, что ширина экрана больше его высоты и соотношение этих размеров составляет 4:3. Такую ориентацию можно назвать «пейзажной» (Landscape). Стандартные графические режимы с высоким разрешением (640 х 480, 800 х 600 и далее) имеют то же соотношение числа точек в строке и числа строк. Этим достигается неискаженное изображение фигур: квадрат на экране.

· Для цветных мониторов важным параметром является размер зерна экрана. Зерно экрана является мельчайшей частицей изображения. Существуют мониторы с зернистостью 0,42, 0,39, 0,31, 0,28, 0,26 мм и тоньше. Чем больше зерно экрана, тем хуже изображение.

· Допустимая частота развертки определяется в основном параметрами отклоняющей системы и мощностью генератора строчной развертки. В соответствии с нормами ТСО99 минимальная частота вертикальной развертки (частота кадра) должна составлять 85 Гц в любом режиме, а
рекомендуемая — 100 Гц, Для обеспечения прогрессивной (нечередующейся) развертки в режимах с высоким разрешением (большим числом строк) требуется очень высокая частота строчной развертки. Так, для режима 1024 х 768 при частоте кадра 85 Гц строчная частота должна быть порядка 70 кГц, а для режима 1600 х 1200 при частоте кадра 100 Гц строчная развертка составляет 126 кГц.

· На реальную разрешающую способность существенно влияет полоса пропускания видеотракта (Video Bandwidth). При недостаточно широкой полосе пропускания мелкие детали — точки или вертикальные линии толщиной в один пиксел — могут становиться нечеткими и даже незаметными. В технических данных на монитор обычно указывают предельное разрешение и максимальные частоты разверток. Однако это вовсе не означает, что максимальное разрешение можно использовать на максимальной частоте, да еще и при нечередующейся развертке. Оценить предел возможностей позволяет полоса пропускания. Грубо требуемую полосу пропускания (BW, Гц) можно оценить через число точек в строке (Н), число строк (V) и частоту вертикальной развертки кадра(F, Гц):

BW=kxHxVxF, (Гц)

где поправочный коэффициент к = (1,3...1,4) учитывает отключения вывода точек на обратном ходе луча по строке и кадру. Для чересстрочной развертки в формулу подставляется половина частоты развертки.(от 60 до 80МГц)

· Антибликовое состояние экрана определяется правильной ориентацией экрана относительно источника освещения, а также уровнем плоскости самого экрана, который традиционно изготавливают слегка выпуклым для приближения угла падения электронного луча к прямому углу на краях экрана. Новые мониторы имеют плоский экран, что обеспечивает меньшие искажения и отсутствие бликов. Уменьшить блики позволяет и специальное антибликовое покрытие экрана (Antiglare coating), а также применение стеклянных поляризационных фильтров.

· Потенциал статического электричества снижают, применяя антистатическое покрытие, снимающее электростатический заряд с экрана, — это отмечается аббревиатурой AS (Anti Static) в перечислении достоинств монитора. Потенциал снижают также многие экранные фильтры — у них даже имеется провод с зажимом, который нужно присоединить, к неокрашенной металлической части заземленного корпуса компьютера.

· Большая часть излучения исходит из задней стенки (с тыльной части трубки) и достается не опера­тору, а его соседу при неудачной расстановке техники. Уровень радиации мониторов стремятся уменьшать, и аббревиатура LR (Low Radiation) указывает на заботу производителя о здоровье пользователя, но без конкретных цифр.

 

Управление монитором определяют следующие основные функции:

- настройки цветов;

- качество сведения лучей;

- настройка геометрии;

- синхронизация;

- цифровое управление;

- управление энергопотреблением.

Настройка цветов

Яркость (Brightness) и контрастность (Contrast) изображения обычно регулируют с помощью органов управления, расположенных на лицевой панели монитора. Иногда даётся возможность регулировки баланса базисных цветов, но для верного воспроизведения цвета (в режимах High Color и True Color) такая регулировка может оказаться и вредной. Цветовую температуру определяют через цвет свечения раскаленного железа. Обычные лампы накаливания дают «белый» цвет с температурой около 3 000о К, и этот свет нам кажется желтоватым. Произвольное значение температуры белого цвета можно задать балансировкой яркости двух цветов (красного и синего) относительно фиксированного уровня зеленого. Существует и такое понятие, как чистота цвета (Colour Purity), которая может ухудшаться при намагничивании элементов кинескопа

Качество сведения лучей

Важным параметром монитора, не имеющим численного определения, является качество сведения лучей. При хорошем сведении тонкие белые линии (например, символы) должны быть белыми, а не радужными. Сведение лучей чаще всего ухудшается по углам экрана. Для проверки качества сведения в первом приближении подходит наблюдение за сообщениями при загрузке, выводимыми обычно белыми символами. Удобен также внимательный осмотр рамок окон оболочки типа Norton Commander.

Настройка геометрии

Регулировка размеров по вертикали (V.Size) и горизонтали (H.Size) позволяет подогнать параметры генераторов развертки так, чтобы изображение попадало в заданную область. Здесь возможны два вида недостатков изображения:

а) изображение разворачивается в меньшую область, чем нужно (Underscan);

б) вылезает за границы экрана (Overscan).

Кроме регулировки размеров важна и юстировка — подбор смещения по вертикали (V.Shift, V-Position или V.Phase) и горизонтали (H.Shift, H-Position или H.Phase). Наименование этих регулировок смещением (Shift) или позицией (Position) отражает видимое на экране действие и характеризует эксплуатационные свойства монитора. Наименование их же фазой (Phase) отражает фазовый сдвиг генераторов относительно синхроимпульсов и характеризует инженерные свойства монитора.

Кроме размера и положения мониторы могут иметь регулировку геометрических искажений типа трапеции (Trapezoid) и «бочки» (Pincushion). Все эти регулировки удобнее всего производить при выводе тестового изображения в виде сетки с квадратными ячейками. Все квадраты должны выглядеть действительно квадратными. Желательно проверять одно и то же изображение с разным уровнем яркости — его размеры и форма не должны заметно изменяться. Если размер меняется (чем ярче, тем крупнее), это означает недостаточную мощность источника высокого напряжения кинескопа и его нестабильность при изменении яркости. Это связано с тем, что, чем ниже напряжение, тем ниже скорость электронов и больше угол отклонения луча при таком же магнитном поле развертки.

Синхронизация и цифровое управление

Мониторы EGA имели два существенно различающихся режима синхронизации. Режим задавался относительной полярностью вертикальных синхроимпульсов. Для каждого режима (Mode 1 и Mode 2) использовались отдельные элементы подстройки. Одними из первых эту проблему решили разработчики фирмы NEC, и под соответствующие мониторы фирма даже зарезервировала торговую марку MultiSync. Потом появились системы MultiScan и MultiFrequency, которые обозначают ту же возможность. Адаптеры VGA и SVGA позволяют использовать различные режимы разрешения без существенного изменения частот, но при этом возникает потребность выбора частот развертки. При изменении параметров синхронизации (например, при переключении задач, работающих в разных графических режимах) приходится подстраивать геометрические параметры изображения, что вручную делать не очень удобно.

Решить проблему подстройки частотной синхронизации позволило цифровое управление (Digital Control, или DC), которое стало обычным практически для всех современных мониторов. Суть цифрового управления сводится к тому, что в монитор встраивается специализированный микроконтроллер, управляющий практически всеми параметрами монитора. Поскольку микроконтроллер может хранить большое количество параметров (он для этого имеет энергонезависимую память), несложно его заставить запоминать наборы параметров, заданных для каждого используемого видеорежима. Таким образом, после первоначального обучения контроллер быстро устанавливает запомненные настройки для текущего видеорежима. Установленный видеорежим распознается по частотам и полярности сигналов синхронизации.. В режиме самотестирования микроконтроллер при отсутствии сигнала от компьютера сам формирует цветное графическое изображение, по которому можно произвести настройку и оценить качество монитора. Конечно, монитор должен определить причину отсутствия сигнала — это ведь может быть и команда — системы управления энергопотреблением (блок DPMS).

 

<== предыдущая лекция | следующая лекция ==>
Стандарты кодеков изображений MPEG | Плоские дисплеи
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1677; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.