Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Датчики

ЛЕКЦИЯ 8

Датчики температуры, давления, уровня, пути. Фотодатчики. Оптоэлектрические датчики. Герконы. Датчики скорости. Датчики Холла. Реле. реализующие функции датчиков (реле времени, напряжения, тока)

В процессе работы электротехнического и технологического оборудования возникает необходимость контролировать происходящие при этом процессы, для этого надо иметь информацию о состоянии и текущих значениях скорости, тока, момента, ЭДС, температуры, давления, уровня, положения, освещенности и т.д. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название измерительных преобразователей или датчиков.

Сигнал от датчика подается на устройство сравнения вместе с заданным сигналом, сигнал разности подается на усилитель, и этот усилительный сигнал действует на исполнительный орган, изменяющий состояние регулируемого (контролируемого) объекта.

Классифицируются датчики по следующим признакам:

по принципу преобразования электрических и неэлектрических величин в электрические датчики подразделяются на пьезоэлектрические, тепловые, давления, уровня, пути, электромагнитные датчики, фотодатчики, оптроны, герконы, датчики Холла;

по конструкции – контактные и бесконтактные;

по роду тока и величине напряжения;

по току выходного исполнительного органа;

по конструктивным особенностям и степени защиты.

Тепловые датчики Принцип действия тепловых датчиков основан на использовании тепловых процессов (нагрева, охлаждения, теплообмена). Для измерения температуры преобразование происходит в промежуточную величину, например в ЭДС, электрическое сопротивление и другие величины.

Из всех существующих методов измерения температуры наиболее широко применяются термоэлектрические.

Термоэлектрическое явление заключается в том, что при соединении двух проводов А и В (рис. 8.1) из разных материалов (термопара) и создании разности температур между точкой соединения Т1 и точками свободных концов Т0 возникает ЭДС, пропорциональная разности функций температур:

.

Значение термо ЭДС зависит от материалов термопары и колеблется в пределах от долей до сотен милливольт на 100˚С.

Наряду с термоэлектрическими датчиками температуры

применяются терморезистивные датчики, называемые термометрами сопротивления.

 
 

 


Рис. 8.1. Схема термоэлектрического преобразователя

Датчики уровня. Служат для контроля уровня жидкостей в резервуарах и для подачи сигналов о регулировании этого уровня. Датчики уровня бывают: электродные, поплавковые, мембранные.

Электродный датчик применяется для контроля уровня электропроводных жидкостей. Датчик имеет короткий 1 и два длинных электрода 2, 3, закрепленные в коробке зажимов (рис. 8.2). Короткий электрод является контактом верхнего уровня, а длинный – нижнего уровня жидкости. Датчик соединяется проводами со станцией управления двигателем насоса. Касание воды короткого электрода приводит к отключению пускателя насоса, понижение уровня воды ниже длинного электрода дает команду на включение насоса.

 
 

 

 


Рис. 8.2. Электродный датчик

Электроды датчика включены в цепь катушки промежуточного реле K, которое включается во вторичную обмотку понижающего трансформатора напряжением 12 В. При подъеме уровня жидкости в резервуаре до уровня короткого электрода 1, образуется электрическая цепь: вторичная обмотка трансформатора – катушка реле K – электрод 1 – жидкость – электрод 2. Реле сработает и становится на самопитание через свой контакт K и электрод 3, при этом контакты 6 реле дают команду на отключение электродвигателя насоса. При понижении уровня жидкости ниже уровня электрода 3 реле отключается и включает электродвигатель насоса.

Поплавковый датчик (реле) применяется в отапливаемых помещениях для контроля уровня неагрессивных жидкостей. На рис. 8.3 показано схематическое устройство реле. В резервуар 10, погружается поплавок 1, подвешенный на гибком канате через блок 3 и уравновешенный грузом 6. На канате закреплены два упора 2 и 5, которые при предельных уровнях жидкости в резервуаре поворачивают коромысло 4 контактного устройства 8. При поворотах коромысло замыкает соответственно контакты 7 или 9, включающие или отключающие электродвигатель насоса.

 

 

 
 

 


Рис. 8.3. Поплавковый датчик (реле)

Датчики пути. Электроконтактные датчики представляют собой конечные и путевые выключатели, микропереключатели. Они кинематически связаны с рабочими механизмами и управляющие приводом в зависимости от пути, пройденного рабочим механизмом. Выключатель, ограничивающий ход рабочего механизма, называется конечным выключателем. Путевые выключатели могут координировать работу нескольких приводов, производя их пуск, останов, изменение скорости в зависимости от положения, занимаемого механизмом рабочей машины.

Принцип действия датчиков основан на том, что их устанавливают на неподвижных частях рабочих органов в определенном положении, а движущиеся рабочие органы, на которых укреплены кулачки, достигнув заданного положения, воздействуют на датчики, вызывая их срабатывание.

По характеру перемещения измерительного (подвижного) органа выключатели подразделяются на нажимные, когда шток совершает прямолинейное движение и рычажные, когда движение передается через устройство в виде рычага, поворачивающегося на некоторый угол.

Выключатели, у которых срабатывание контактов зависит от скорости движения упора, называют выключателями простого действия, а выключатели, у которых переключение не зависит от скорости движения упора, называют моментными.

 

 
 

 

 


Рис. 8.4. Датчик пути нажимной

Нажимные выключатели выпускают в основном простого действия (рис. 8.4). Выключатель состоит из основания 1, неподвижных контактов 6, штока 4, опирающегося на сферическую поверхность втулки 7, несущей мостики подвижных контактов 5.

Для более надежного включения подвижные контакты 5 и неподвижные 6 поджимаются пружиной 2. При воздействии усилия шток 4 перемещается и контактные мостики переключают, т. е. отключают размыкающие и включают замыкающие контакты.

Бесконтактные путевые выключатели. В схемах управления электроприводами станков, механизмов и машин применяются преобразователи пути, работающие без механического воздействия со стороны движущегося упора. Широкое распространение получили бесконтактные переключатели щелевого типа с транзисторными усилителями, работающими в генераторном режиме. На рис. 8.5, а показан общий вид переключателя типа БВК-24. Его магнитопровод, размещенный в корпусе 4, состоит из двух ферритовых сердечников 1 и 2 с воздушным зазором шириной между ними. В сердечнике 1 размещается первичная обмотка w к и обмотка положительной обратной связи w п.с, в сердечнике 2 – обмотка отрицательной обратной связи w о.с. Такой магнитопровод исключает влияние внешних магнитных полей. Катушки обратной связи включены последовательно – встречно. В качестве переключающего элемента используется алюминиевый лепесток (пластинка) 3 толщиной до 3 мм, который может перемещаться в щели (в воздушном зазоре) магнитной системы датчика.

 
 

 


Рис. 8.5. Бесконтактный путевой переключатель БВК-24:

а) – общий вид; б) – схема электрическая принципиальная

Если лепесток находится вне сердечника, то разность напряжений, индуктируемых в обмотках w п.с и w о.с, будет положительной, транзистор VT 1 закрыт и генерация незатухающих колебаний в контуре w кС 3 (рис. 8.5, б) не возникает. При введении лепестка в щель датчика связь между катушками w к и w о.с ослабляется (поэтому лепесток еще называют экраном), на базу транзистора VT 1 подается отрицательное напряжение и он открывается. В контуре w кС 3 возникает генерация и появляется переменный ток, который индуктирует ЭДС в катушке w п.с в цепи базы транзистора. В цепи базы транзистора VT 1 происходит детектирование переменной составляющей тока базы. Транзистор открывается, вызывая срабатывание реле K.

Для стабилизации работы транзистора при колебаниях температуры и напряжения служит нелинейный делитель напряжения, состоящий из линейного элемента – R 1, полупроводникового терморезистора R 2 и диода VD 2.

Погрешность срабатывания составляет . Напряжение питания переключателя БВК–24 составляет 24 В.

Переключатель обладает высокой надежностью, большой допустимой частотой срабатывания и быстродействием.

<== предыдущая лекция | следующая лекция ==>
Бесконтактные логические элементы | Фотодатчики
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1061; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.