Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевых основах

СОВРЕМЕННЫЕ АВИАЦИОННЫЕ СТАЛИ

Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевых основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

К высоколегированным сталям условно отнесены сплавы, массовая доля железа в которых более 45 %, а суммарная массовая доля, легирующих элементов не менее 10 %, считая по верхнему пределу, при массовой, доле одного из элементов не менее 8 % по нижнему пределу.

К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65 % при приблизительном отношении никеля к железу 1:1,5).

К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50 %).

Стандарт разработан с учетом требований международных стандартов ИСО 683/XIII-85, ИСО 683/XV-76, ИСО 683/XVI-76, ИСО 4955-83.

КЛАССИФИКАЦИЯ

1.1. В зависимости от основных свойств стали и сплавы подразделяют на группы:

I - коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.;

II - жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии;

III - жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

1.2. В зависимости от структуры стали подразделяют на классы:

мартенситный - стали с основной структурой мартенсита;

мартенситно-ферритный - стали, содержащие в структуре кроме мартенсита, не менее 10 % феррита;

ферритный - стали, имеющие структуру феррита, (без a«g превращений);

аустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;

аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10 %);

аустенитный - стали, имеющие структуру аустенита.

Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении, сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения. причиной забракования стали служить не могут.

1.3. В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:

сплавы на железоникелевой основе;

сплавы на никелевой основе.

В России и в странах СНГ принята разработанная раннее в СССР буквенно-цифровая система обозначения марок сталей и сплавов, где согласно ГОСТу, буквами условно обозначаются названия элементов и способов выплавки стали, а цифрами - содержание элементов. Буквенные обозначения применяются также для указания способа раскисления стали "КП - кипящая сталь, ПС - полуспокойная сталь, СП - спокойная сталь". Существуют определенные особенности обозначения для разных групп сталей конструкционных, строительных, инструментальных, нержавеющих и др. Общими для всех обозначениями являются буквенные обозначения легирующих элементов: Н - никель, Х - хром, К - кобальт, М - молибден, В - вольфрам, Т - титан, Д - медь, Г - марганец, С - кремний.

Рафинирование металло в, очистка первичных (черновых) металлов от примесей. Черновые металлы, получаемые из сырья, содержат 96—99% основного металла, остальное приходится на примеси. Такие металлы не могут использоваться промышленностью из-за низких физико-химических и механических свойств. Примеси, содержащиеся в черновых металлах, могут представлять самостоятельную ценность. Так, стоимость золота и серебра, извлекаемых из меди, полностью окупает все затраты на Рафинирование металлов Различают 3 основных метода Рафинирование металлов: пирометаллургический, электролитический и химический. В основе всех методов лежит различие свойств разделяемых элементов: температур плавления, плотности, электроотрицательности и т.д. Для получения чистых металлов нередко используют последовательно несколько методов Рафинирование металлов

Пирометаллургическое рафинирование, осуществляемое при высокой температуре в расплавах, имеет ряд разновидностей. Окислительное Рафинирование металлов основано на способности некоторых примесей образовывать с О, S, Cl, F более прочные соединения, чем соединения основного металла с теми же элементами. Способ применяется, например, для очистки Cu, Pb, Zn, Sn. Так, при продувке жидкой меди воздухом примеси Fe, Ni, Zn, Pb, Sb, As, Sn, имеющие большее сродство к кислороду, чем Cu, образуют окислы, которые всплывают на поверхность ванны и удаляются. Ликвационное разделение основано на различии температур плавления и плотностей компонентов, составляющих сплав, и на малой их взаимной растворимости. Например, при охлаждении жидкого чернового свинца из него при определённых температурах выделяются кристаллы Cu (т. н. шликеры), которые вследствие меньшей плотности всплывают на поверхность и удаляются. Способ применяется для очистки чернового свинца от Cu, Ag, Au, Bi, очистки чернового цинка от Fe, Cu, Pb, при Рафинирование металлов Sn и др. металлов. При фракционной перекристаллизации используется различие в растворимости примесей металла в твёрдой и жидкой фазах с учётом медленной диффузии примесей в твёрдой фазе. Способ применяется в производстве полупроводниковых материалов и для получения металлов высокой чистоты (например, зонная плавка,плазменная металлургия, вытягивание монокристаллов из расплава, направленная кристаллизация). В основе ректификации, или дистилляции, лежит различие в температурах кипения основного металла и примеси. Рафинирование металлов осуществляется в форме непрерывного противоточного процесса, в котором операции возгонки и конденсации удаляемых фракций многократно повторяются. Использование вакуума позволяет заметно ускорить Рафинирование металлов Способ применяется при очистке Zn от Cd, Pb от Zn, при разделении Al и Mg, в металлургии Ti и др. процессах. Вакуумная фильтрация жидкого металла через керамические фильтры (например, в металлургии Sn) позволяет удалить взвешенные в нём твёрдые примеси. При Рафинирование металлов стали в ковше жидкими синтетическими шлаками поверхность контакта между металлом и шлаком в результате их перемешивания значительно больше, чем при проведении рафинировочных процессов в плавильном агрегате; благодаря этому резко повышается интенсивность протекания десульфурации,дефосфорации,раскисления металлов, очищения его от неметаллических включений. Рафинирование металлов стали продувкой расплава инертными газами используется для удаления из металла взвешенных частиц шлака или твёрдых окислов, прилипающих к пузырькам газа и флотируемых на поверхность расплава.

Электролитическое рафинирование, представляющее собой электролиз водных растворов или солевых расплавов, позволяет получать металлы высокой чистоты. Применяется для глубокой очистки большинства цветных металлов.

Электролитическое Рафинирование металлов с растворимыми состоит в анодном растворении очищаемых металлов и осаждении на катоде чистых металлов в результате приобретения ионами основного металла электронов внешней цепи. Разделение металлов под действием электролиза возможно вследствие различия электрохимических потенциалов примесей и основного металла. Например, нормальный электродный потенциал Cu относительно водородного электрода сравнения, принятого за нуль, + 0,346, у Au и Ag эта величина имеет большее положительное значение, a y Ni, Fe, Zn, Mn, Pb, Sn, Co нормальный электродный потенциал отрицателен. При электролизе медь осаждается на катоде, благородные металлы, не растворяясь, оседают на дно электролитной ванны в виде шлама, а металлы, обладающие отрицательным электродным потенциалом, накапливаются в электролите, который периодически очищают. Иногда (например, в гидрометаллургии Zn) используют электролитическое Рафинирование металлов с нерастворимыми анодами. Основной металл находится в растворе, предварительно тщательно очищенном от примесей, и в результате электролиза осаждается в компактном виде на катоде.

Химическое рафинирование основано на различной растворимости металла и примесей в растворах кислот или щелочей. Примеси, постепенно накапливающиеся в растворе, выделяются из него химическим. путём (гидролиз,цементация, образование труднорастворимых соединений, очистка с помощью экстракции или ионного обмена). Примером химического Рафинирование металлов может служить аффинаж благородных металлов. Рафинирование металлов Au производят в кипящей серной или азотной кислоте. Примеси Cu, Ag и др. металлов растворяются, а очищенное золото остаётся в нерастворимом осадке.

Все большее распространение в современном машиностроении получают газотурбинные двигатели (ГТД). В настоящее время существует несколько классов двигателей: это турбовальные двигатели разных типов (ТВ2-117, ТВ3-117 разных модификаций, ВК-2500 и др.), использующиеся в вертолетостроение (Ми-8, Ми-24, Ми-28, Ка-52 и др.); турбовинтовые двигатели (ТВ7-117С/СМ, ТВ3-117ВМА-СБМ1, ВК-1500 и др.) для гражданской авиа­ции (Ил-114, Ан-140, Бе-132МК и др.); двигатели (РД-33, АИ-222-25, АЛ-31Ф и др.) военной авиации для самолетов серии Миг, Су; танковые двигатели (семейство ГТД-1250) для тягачей, САУ, Т-80; морские и промышленные двигатели.

Авиационное двигателестроение требует от промышленности получение исходных заготовок с высокими эксплуатационными свой­ствами, что обеспечивается использованием в производстве высоколе­гированных сплавов на никелевой основе (ЭК79ИД, ЭК151ИД, ЭК152ИД, ЭП975ИД, и др.) и получением из них заготовок сложной конфигурации (например, диск турбины с валом) методами ковки, штамповки. Эти сплавы обладают высокой жаропрочностью, но одновременно характеризуются низкой технологичностью при производстве деформированных полуфабрикатов. Жаропрочность сплавов зависит от степени легирования и содержания в них упрочняющей g¢-фазы, количество которой достигает 50¸60%.

Штампованная заготовка из сплава ЭП975ИД (ХН53КВЮТБМР), представляющая собой заготовку диска с лопатками и валом и являющейся высоконагруженной ответственной деталью, работающей при температурах до 850°С, с кратковременным повышением температуры до 1000°С вспомогательных силовых установок ТА-8. Вспомогательная силовая установка ТА-8 выпускается Уфимским агрегатным предприятием ФГУП «Гидравлика» и предназначена для запуска маршевых двигателей ТВ3-117, кондиционирования салонов самолётов, питания бортовой сети электроэнергией переменного и постоянного тока на земле и в полёте. Устанавливается на воздушных судах Ан-72, Ми-26, Ми-8, Ту-134 и др.

Эта штампованная заготовка имеет сложную конфигурацию, и технология ее изготовления заключается в комбинированной деформации на гидравлическом прессе с одновременной выпресовкой вала и формированием дисковой части. Однако при этом возникает противоречие между целью: обеспечением в изделии заданных эксплуатационных свойств и средствами, методами получения таких изделий.

 

<== предыдущая лекция | следующая лекция ==>
Титан и его сплавы. Титан—металл серебристо-белого цвета с плотно­стью 4,5 г/см3 и температурой плавления 1668° С | Общая характеристика жаропрочных никелевых сплавов
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 553; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.