Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клеточная мембрана

 

Мембрана клетки представляет собой мозаику из липидов и белков, её толщина около 6-8 нанонеметров (нм). Липиды клеточной мембраны по большей части относятся к фосфолипидам, в молекулах которых есть полярная, т.е. несущая электрический заряд, головка и два неполярных хвоста, построенных из атомов углерода и водорода.

Такие молекулы плохо растворяются в воде - полярном растворителе: растворению мешают их неполярные хвосты. Поэтому в воде фосфолипиды образуют мицеллы - микроскопические капельки, внутри которых прячутся неполярные хвосты молекул, а полярные головки обращены наружу - к воде. Когда концентрация фосфолипидов высока, мицеллы соединяются друг с другом так, что образуется двойной или бимолекулярный липидный слой, внутрь которого обращены гидрофобные хвосты, а наружную поверхность представляют гидрофильные полярные головки.

Именно так и выглядит липидная основа клеточной мембраны. Кроме представляющего фосфолипиды фосфатидилхолина в ней есть гликолипиды. Они обычно расположены на наружной поверхности мембраны так, что выступающие углеводные части молекул образуют надмембранный слой. Ещё один компонент мембраны - холестерин, напротив, находится во внутреннем слое мембраны и выполняет роль регулятора агрегатного состояния липидной части мембраны: плотную мембрану он разжижает, а жидкую - уплотняет. Нормальное состояние мембраны - это жидкая плёнка определённой вязкости, примерно соответствующей вязкости оливкового масла.

В бимолекулярном липидном слое находятся мембранные белки, молекулы которых значительно крупнее, чем у фосфолипидов, и зачастую свёрнуты наподобие клубка, образуя довольно объёмную структуру: она называется глобулой. Неполярные части белковых молекул обычно погружены вовнутрь, а полярные выступают над мембранной поверхностью как с наружной, так и с внутренней стороны. Есть и такие крупные белковые молекулы, которые пронизывают мембрану насквозь. Их принято называть интегральными белками в отличие от остальных, названных периферическими. Погружённые в жидкую плёнку бимолекулярного слоя липидов белки способны медленно перемещаться из одного участка в другой; используя метафору, о мембране можно сказать так: это липидное море, в котором, как айсберги, плавают белки.

Каким путём могут пройти через мембрану необходимые клетке вещества, как удаляются продукты её жизнедеятельности? Жирорастворимые вещества, естественно, растворяются и в липидах мембраны и поэтому могут довольно легко пройти через неё путём обыкновенной диффузии. Так же легко диффундируют через липидную часть мембраны растворимые в жидкостях газы, например кислород и углекислый газ. Но растворённые в воде молекулы (обычно несущие электрический заряд), ионы и крупномолекулярные соединения способны пройти через мембрану только с помощью специальных транспортных белков, среди которых различают каналы и насосы.

Каналы - это трубчатые белки, они имеют заполненную водой пору, через которую по концентрационному или электрическому градиенту проходит тот или иной ион либо молекула. Такой транспорт называют пассивным, поскольку он не требует расхода энергии специально для переноса. Иное дело, если ионы или молекулы понадобится перенести против концентрационного или электрического градиента: в этом случае понадобится энергия. Такой транспорт назван активным и его осуществляют белки-насосы, которые используют энергию аденозинтрифосфорной кислоты (АТФ).

Многие мембранные белки действуют в качестве ферментов: они ускоряют биохимические реакции в самой мембране и у её поверхностей. Ферменты высоко специфичны, т.е. каждый из них контролирует только одну биохимическую операцию. В связи с этим каждой клетке приходится иметь не одну сотню различных ферментов, как механику, вынужденному носить с собой набор различных гаечных ключей.

Клеточные рецепторы - ещё одна разновидность мембранных белков, Они выступают над наружной поверхностью мембраны и в этой части своей молекулы имеют участки, специфически связывающие строго определённые вещества: нейромедиаторы, гормоны или иные биологически активные соединения. Прикрепление такого вещества к рецептору влияет на деятельность клетки, например изменяет проницаемость её мембраны или скорость обменных реакций внутри клетки. Некоторые белки нужны для сохранения формы клетки и субклеточных структур, для объединения клеток друг с другом - такие белки называют структурными. Все белки, независимо от выполняемой функции, со временем разрушаются, а на смену им синтезируются новые белковые молекулы.

Мембранные белки определяют специфическое поведение той или иной клетки, именно от них зависит: какие именно вещества и в каком количестве смогут войти в клетку или покинуть её. Это обстоятельство важно не только для отдельно взятой клетки, но и для межклеточных отношений, т.е. для межклеточной сигнализации. Передача сигнала от клетки к клетке возможна только двумя способами: проведением электрического тока или использованием специальных химических веществ в качестве курьеров для передачи информации. И в том, и в другом случае клеточные мембраны должны избирательно изменять свою проницаемость, избирательно регулировать характер биохимических реакций, избирательно связываться с определёнными веществами и т.д. По-разному решая все эти проблемы выбора, клетки демонстрируют свою индивидуальность только благодаря индивидуальному подбору белков.

Как уже было сказано, органеллы клетки имеют собственные мембраны. К этому следует добавить, что они во многом напоминают плазматическую мембрану клетки по своему строению и функциональной организации.

<== предыдущая лекция | следующая лекция ==>
Общие сведения о клетке | Ядро клетки
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.