Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частные случаи скалярных полей

Скалярное поле называется плоским, если существует такая плоскость П, что поле принимает одинаковые значения во всех точках прямой, перпендикулярной плоскости П. Другими словами, это поле устроено одинаково во всех плоскостях, параллельных плоскости П. Удачным выбором координатной системы в этом случае будет ввести её так, чтобы плоскость П была плоскостью Оху. Тогда ось Оz будет перпендикулярна П, и, по определению плоского поля, функция u (M) не должна зависеть от z, т.е. u (M) = u (х, у). Поверхности уровня этого поля - цилиндрические поверхности с образующими, перпендикулярными плоскости П; след этих поверхностей в плоскости П даст линии уровня функции u (х, у).

Скалярное поле называется цилиндрическим, если существует такая прямая L, что значения поля u (M) зависят только от расстояния r от точки М до прямой L. Если система координат введена так, что эта прямая - ось Оz, то и u (M)= u (r), т.е. цилиндрическое поле - частный случай плоского поля. Так как , то , . Понятно, что цилиндрическое поле проще всего описывается в цилиндрических координатах, так как функция u (M) не будет зависить от координат .

Скалярное поле называется сферическим, если существует такая точка О, что значения поля u (M) зависят только от расстояния r от точки М до точки О. Если точка О взята за начало системы координат, то и u (M)= u (r). Поверхности уровня сферического поля - сферы с центром в точке О. В этом случае также , . Сферическое поле проще всего описывается в сферических координатах, так как функция u (M) не будет зависить от координат .

17.2. Векторное поле.

17.2.1. Векторное поле. Если каждой точке М некоторой области V пространства соответствует значение некоторой векторной величины (M), то говорят, что в области V задано векторное поле (M). Примеры векторных полей - поле тяготения, поля электрической и магнитной напряжённостей, поле скоростей частиц движущейся жидкости.

Если в некоторой декартовой системе координат вектор (M) имеет координаты Р (M), Q (M), R (M), то . Таким образом, задание векторного поля (M) эквивалентно заданию трёх скалярных полей Р (M), Q (M), R (M). Будем называть векторное поле гладким, если его координатные функции - гладкие скалярные поля. Кроме того, будем предполать, что векторное поля не имеет особых точек, т.е. при , т.е. функции Р, Q, R не равны нулю одновременно.

В зависимости от рассматриваемых вопросов для нас будет более предпочтительной какая-либо одна из двух интерпретаций векторного поля - силовая или гидродинамическая. В силовой интерпретации вектор (M) трактуется как сила (тяжести, напряжённости, например), действующая в точке М; в гидродинамической интепретации (M) рассматривается как поле скоростей текущей в области V несжимаемой жидкости. Как и в случае скалярного поля, мы рассматриваем стационарные векторные поля, т.е. поля, постоянные во времени.

<== предыдущая лекция | следующая лекция ==>
Поверхностный интеграл второго рода (по координатам) | Дивергенция векторного поля
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 331; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.