Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Протокол управления передачей TCP




Транспортные протоколы

Протокол ICMP

Протокол ICMP (Internet Control Message Protocol, Протокол Управляющих Сообщений Интернет) выполняет следующие задачи:

- сообщает узлу-источнику об отказах маршрутизации;

- проверяет способности узлов образовывать повторное эхо в объединенной сети (сообщения Echo и Reply ICMP);

- стимулирует более эффективную маршрутизацию (с помощью сообщений Redirect ICMP - переадресации ICMP);

- информирует узел-источник о том, что некоторая дейтаграмма превысила назначенное ей время существования в пределах данной сети (сообщение Time Exceeded ICMP - "время превышено");

- обеспечивает для новых узлов возможность нахождения маски подсети, используемой в объединенной сети в данный момент.

Протокол ICMP является неотъемлемой частью IP-модуля. Он обеспечивает обратную связь в виде диагностических сообщений, посылаемых отправителю при невозможности доставки его дейтаграммы и в других случаях.

ICMP-сообщения не порождаются при невозможности доставки:

- дейтаграмм, содержащих ICMP-сообщения;

- не первых фрагментов дейтаграмм;

- дейтаграмм, направленных по групповому адресу (широковещание, мультикастинг);

- дейтаграмм, адрес отправителя которых нулевой или групповой. Все ICMP-сообщения имеют IP-заголовок, значение поля "Protocol" равно 1.

Данные дейтаграммы с ICMP-сообщением не передаются вверх по стеку протоколов для обработки, а обрабатываются IP-модулем.

После IP-заголовка следует 32-битное слово с полями "Тип", "Код" и "Контрольная сумма". Поля типа и кода определяют содержание ICMP-сообщения. Формат остальной части дейтаграммы зависит от вида сообщения. Контрольная сумма считается так же, как и в IP-заголовке, но в этом случае суммируется содержимое ICMP-сообщения, включая поля "Тип" и "Код".

Транспортный уровень Internet реализуется TCP (Transmission Control Protocol, Протокол контроля передачи) и протоколом дейтаграмм пользователя UDP (User Datagram Protocol). TCP обеспечивает транспортировку данных с установлением соединения, в то время как UDP работает без установления соединения.

Протокол TCP предоставляет транспортные услуги, отличающиеся от услуг UDP. Вместо ненадежной доставки дейтаграмм без установления соединений, он обеспечивает гарантированную доставку с установлением соединений в виде байтовых потоков.

Протокол TCP используется в тех случаях, когда требуется надежная доставка сообщений. Он освобождает прикладные процессы от необходимости использовать таймауты и повторные передачи для обеспечения надежности. Внутренняя структура модуля TCP гораздо сложнее структуры модуля UDP.

Рисунок 61 - Протоколы транспортного уровня TCP и UDP

 

TCP - надежный байт-ориентированный (byte-stream) протокол с установлением соединения. TCP находится на транспортном уровне стека TCP/IP, между протоколом IP и собственно приложением. Протокол IP занимается пересылкой дейтаграмм по сети, никак не гарантируя доставку, целостность, порядок прибытия информации и готовность получателя к приему данных; все эти задачи возложены на протокол TCP.

При получении дейтаграммы, в поле Protocol которой указан код протокола TCP (6), модуль IP передает данные этой дейтаграммы модулю TCP. Эти данные представляют собой TCP-сегмент, содержащий TCP-заголовок и данные пользователя (прикладного процесса). Модуль TCP анализирует служебную информацию заголовка, определяет, какому именно процессу предназначены данные пользователя, проверяет целостность и порядок прихода данных и подтверждает их прием другой стороне. По мере получения правильной последовательности неискаженных данных пользователя они передаются прикладному процессу.

Ниже основные функции протокола TCP и их реализация рассмотрены более подробно.

Базовая передача данных. Модуль TCP выполняет передачу непрерывных потоков данных между своими клиентами в обоих направлениях. Клиентами TCP являются прикладные процессы, вызывающие модуль TCP при необходимости получить или отправить данные процессу-клиенту на другом узле.

Протокол TCP рассматривает данные клиента как непрерывный не интерпретируемый поток октетов. TCP разделяет этот поток на части для пересылки на другой узел в TCP-сегментах некоторого размера. Для отправки или получения сегмента модуль TCP вызывает модуль IP.

Немедленное отправление данных может быть затребовано процессом-клиентом от TCP-модуля с помощью специальной функции PUSH, иначе TCP сам будет решать, как накапливать и когда отправлять данные клиента или когда передавать клиенту полученные данные.

Обеспечение достоверности. Модуль TCP обеспечивает защиту от повреждения, потери, дублирования и нарушения очередности получения данных.

Для выполнения этих задач все октеты в потоке данных сквозным образом пронумерованы в возрастающем порядке. Заголовок каждого сегмента содержит число октетов данных в сегменте и порядковый номер первого октета той части потока данных, которая пересылается в данном сегменте. Например, если в сегменте пересылаются октеты с номерами от 2001 до 3000, то номер первого октета в данном сегменте равен 2001, а число октетов равно 1000.

Номер первого байта в потоке определяется на этапе установления соединения и обозначается ISN+1. Например, ISN+1=1.

Также для каждого сегмента вычисляется контрольная сумма, позволяющая обнаружить повреждение данных.

При удачном приеме октета данных принимающий модуль посылает отправителю подтверждение о приеме - номер удачно принятого октета. Если в течение некоторого времени отправитель не получит подтверждения, считается, что октет не дошел или был поврежден, и он посылается снова. Этот механизм контроля надежности называется PAR (Positive Acknowledgment with Retransmission). В действительности подтверждение посылается не для одного октета, а для некоторого числа последовательных октетов.

Нумерация октетов используется также для упорядочения данных в порядке очередности и обнаружения дубликатов (которые могут быть посланы из-за большой задержки при передаче подтверждения или потери подтверждения).

Разделение каналов. Протокол TCP обеспечивает работу одновременно нескольких соединений. Каждый прикладной процесс идентифицируется номером порта. Заголовок TCP-сегмента содержит номера портов процесса-отправителя и процесса-получателя. При получении сегмента модуль TCP анализирует номер порта получателя и отправляет данные соответствующему прикладному процессу.

Все распространенные сервисы Интернет имеют стандартизованные номера портов. Например, номер порта сервера электронной почты - 25, сервера FTP -21.

Совокупность IP-адреса и номера порта называется сокетом. Сокет уникально идентифицирует прикладной процесс в Интернет. Например, сокет сервера электронной почты на хосте 194.84.124.4 обозначается как 194.84.124.4.25; часто номер порта отделяется двоеточием.

Управление соединениями. Соединение - это совокупность информации о состоянии потока данных, включающая сокеты, номера посланных, принятых и подтвержденных октетов, размеры окон.

Каждое соединение уникально идентифицируется в Интернет парой сокетов. Соединение характеризуется для клиента именем, которое является указателем на структуру TCB (Transmission Control Block), содержащую информацию о соединении.

Открытие соединения клиентом осуществляется вызовом функции OPEN, которой передается сокет, с которым требуется установить соединение. Функция возвращает имя соединения. Различают два типа открытия соединения: активное и пассивное.

При активном открытии TCP-модуль начинает процедуру установления соединения с указанным сокетом, при пассивном - ожидает, что удаленный TCP-модуль начнет процедуру установления соединения с указанного сокета.

Указание 0.0.0.0:0 в качестве сокета при пассивном открытии означает, что ожидается соединение с любого сокета. Такой способ применяется в демонах - серверах Интернет, которые ждут установления соединения от клиента. Клиент же применяет процедуру активного открытия; сокет при этом формируется из IP-адреса сервера и стандартного номера порта для данного сервиса. Закрытие соединения клиентом производится с помощью функции CLOSE, которой передается имя соединения. Процедура установления соединения происходит следующим образом (рисунок 62).

Рисунок 62 - Установка TCP-соединения

 

Предположим, узел А желает установить соединение с узлом В. Первый отправляемый из А в В TCP-сегмент не содержит полезных данных, а служит для установления соединения. В его заголовке установлен бит SYN, означающий запрос связи, и содержится ISN (Initial Sequence Number -начальный номер последовательности) - число, начиная с которого узел А будет нумеровать отправляемые октеты (например, 0). В ответ на получение такого сегмента узел В откликается посылкой TCP-сегмента, в заголовке которого установлен бит ACK, подтверждающий установление соединения для получения данных от узла А. Так как протокол TCP обеспечивает полнодуплексную передачу данных, то узел В в этом же сегменте устанавливает бит SYN, означающий запрос связи для передачи данных от В к А, и передает свой ISN (например, 0). Полезных данных этот сегмент также не содержит. Третий TCP-сегмент в сеансе посылается из А в В в ответ на сегмент, полученный из В. Так как соединение А -> В можно считать установленным (получено подтверждение от В), то узел А включает в свой сегмент полезные данные, нумерация которых начинается с номера ISN(A)+1. Данные нумеруются по количеству отправленных октетов. В заголовке этого же сегмента узел А устанавливает бит ACK, подтверждающий установление связи В -> A, что позволяет хосту В включить в свой следующий сегмент полезные данные для А.

Сеанс обмена данными заканчивается процедурой разрыва соединения, которая аналогична процедуре установки, с той разницей, что вместо SYN для разрыва используется служебный бит FIN ("данных для отправки больше не имею"), который устанавливается в заголовке последнего сегмента с данными, отправляемого узлом.

Формат заголовока TCP-сегмента. TCP-сегмент состоит из заголовка и данных. Заголовок сегмента состоит из 32-разрядных слов и имеет переменную длину, зависящую от размера поля Options, но всегда кратную 32 битам. За заголовком непосредственно следуют данные - часть потока данных пользователя, передаваемая в данном сегменте. Формат заголовка представлен на рисунке 63.

Рисунок 63 - Формат заголовка TCP-сегмента

 

Значения полей заголовка следующие.

Source Port (16 бит), Destination Port (16 бит) - номера портов процесса-отправителя и процесса-получателя соответственно.

Sequence Number (SN) (32 бита) - порядковый номер первого октета в поле данных сегмента среди всех октетов потока данных для текущего соединения, то есть если в сегменте пересылаются октеты с 2001-го по 3000-й, то SN=2001. Если в заголовке сегмента установлен бит SYN (фаза установления соединения), то в поле SN записывается начальный номер (ISN), например, 0. Номер первого октета данных, посылаемых после завершения фазы установления соединения, равен ISN+1. Acknowledgment Number (ACK) (32 бита) - если установлен бит ACK, то это поле содержит порядковый номер октета, который отправитель данного сегмента желает получить. Это означает, что все предыдущие октеты (с номерами от ISN+1 до ACK-1 включительно) были успешно получены.

Data Offset (4 бита) - длина TCP-заголовка в 32-битных словах.

Reserved (6 бит) - зарезервировано; заполняется нулями.

Control Bits (6 бит) - управляющие биты; активным является положение "бит установлен".

URG - поле срочного указателя (Urgent Pointer) задействовано;

АСК - поле номера подтверждения (Acknowledgment Number) задействовано;

PSH - осуществить "проталкивание" - если модуль TCP получает сегмент с установленным флагом PSH, то он немедленно передает все данные из буфера приема процессу-получателю для обработки, даже если буфер не был заполнен;

RST - перезагрузка текущего соединения;

SYN - запрос на установление соединения;

FIN - нет больше данных для передачи.

Window (16 бит) - размер окна в октетах.

Checksum (16 бит) - контрольная сумма, представляет собой 16 бит, дополняющие биты в сумме всех 16-битовых слов сегмента (само поле контрольной суммы перед вычислением обнуляется). Контрольная сумма, кроме заголовка сегмента и поля данных, учитывает 96 бит псевдозаголовка, который для внутреннего употребления ставится перед TCP-заголовком. Этот псевдозаголовок содержит IP-адрес отправителя (4 октета), IP-адрес получателя (4 октета), нулевой октет, 8-битное поле "Протокол", аналогичное полю в IP-заголовке, и 16 бит длины TCP сегмента, измеренной в октетах. Такой подход обеспечивает защиту протокола TCP от ошибшихся в маршруте сегментов. Информация для псевдозаголовка передается через интерфейс "Протокол TCP/межсетевой уровень" в качестве аргументов или результатов запросов от протокола TCP к протоколу IP.

Urgent Pointer (16 бит) - используется для указания длины срочных данных, которые размещаются в начале поля данных сегмента. Указывает смещение октета, следующего за срочными данными, относительно первого октета в сегменте. Например, в сегменте передаются октеты с 2001-го по 3000-й, при этом первые 100 октетов являются срочными данными, тогда Urgent Pointer = 100. Протокол TCP не определяет, как именно должны обрабатываться срочные денные, но предполагает, что прикладной процесс будет предпринимать усилия для их быстрой обработки. Поле Urgent Pointer задействовано, если установлен флаг URG.

Options - поле переменной длины; может отсутствовать или содержать одну опцию или список опций, реализующих дополнительные услуги протокола TCP. Опция состоит из октета "Тип опции", за которым могут следовать октет "Длина опции в октетах" и октеты с данными для опции.

Стандарт протокола TCP определяет три опции (типы 0,1,2).

Опции типов 0 и 1 ("Конец списка опций" и "Нет операции" соответственно) состоят из одного октета, содержащего значение типа опции. При обнаружении в списке опции "Конец списка опций" разбор опций прекращается, даже если длина заголовка сегмента (Data Offset) еще не исчерпана. Опция "Нет операции" может использоваться для выравнивания между опциями по границе 32 бит.

Опция типа 2 "Максимальный размер сегмента" состоит из 4 октетов: одного октета типа опции (значение равно 2), одного октета длины (значение равно 4) и двух октетов, содержащих максимальный размер сегмента, который способен получать TCP-модуль, отправивший сегмент с данной опцией. Опцию следует использовать только в SYN-сегментах на этапе установки соединения.

Padding - выравнивание заголовка по границе 32-битного слова, если список опций занимает нецелое число 32-битных слов. Поле Padding заполняется нулями.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 524; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.