Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Организации клетки и ее компоненты

ОБЩИЕ ПРИНЦИПЫ СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ

ФУНКЦИОНАЛЬНАЯ МОРФОЛОГИЯ КЛЕТКИ

Г л а в а 3

ЦИТОЛОГИЯ:

 

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех растительных и животных организмов. Организм взрослого человека состоит примерно из 1013 клеток, которые подразделяют более чем на 200 типов, существенно различающихся своими структурными и функциональными особенностями. Вместе с тем, клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов.

Компоненты клетки. Каждая клетка состоит из двух основных компонентов – ядра и цитоплазмы. В ядре находятся хромосомы, содержащие генетическую информацию, которая в результате процесса транскрипции постоянно избирательно считывается и направляется в цитоплазму, где она контролирует ход многообразных процессов жизнедеятельности клетки, в частности, сбалансированные процессы синтеза, анаболизма (от греч. anabole – повышение), и разрушения, катаболизма (от греч. kataballo - разрушаю). Указанные процессы осуществляются в цитоплазме благодаря взаимодействию ее компонентов.

Компоненты цитоплазмы. Цитоплазма отделена от внешней (для данной клетки) среды внешней клеточной мембраной (плазмолеммой) и содержит органеллы и включения (рис. 3-1), погруженные в гиалоплазму (клеточный матрикс).

Органеллы - постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке подразделяются на органеллы общего значения и специальные органеллы.

(1) органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся митохондрии, рибосомы, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы, пероксисомы, клеточный центр, компоненты цитоскелета;

(2) специальные органеллы имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят реснички, жгутики, микроворсинки, миофибриллы, акросому (спермиев). Специальные органеллы образуются в ходе развития как производные органелл общего значения.

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяют также на мембранные и немембранные. К мембранным органеллам относятся митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы, к немембранным – рибосомы, клеточный центр, реснички, микроворсинки, жгутики, компоненты цитоскелета.

Функциональные системы (аппараты) клетки – комплексы органелл, которые под контролем ядра обеспечивают выполнение важнейших функций клетки. Выделяют: (1) синтетический аппарат; (2) энергетический аппарат; (3) аппарат внутриклеточного переваривания (эндосомально-лизосомальный); (4) цитоскелет.

Включения – временные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток. Подразделяются на несколько типов (см. ниже).

Помимо структур цитоплазмы, которые можно четко отнести к органеллам или включениям, в ней имеется огромное количество разно-образных транспортных пузырьков, обеспечивающих не только перенос веществ между различными компонентами клетки, но и их частичное преобразование (процессинг) благодаря наличию ферментов в мембране, которая образует их стенку.

Мембранные структуры (компоненты) клетки – совокупное название различных структур цитоплазмы и ядра: плазмолеммы, ряда органелл, включений, транспортных пузырьков, а также ядерной оболочки (кариолеммы), в состав которых входят клеточные мембраны. Последние в различных мембранных структурах клетки организованы сходным образом, однако существенно различаются, в первую очередь, составом мембранных белков, определяющим специфику их функций.

Гиалоплазма (клеточный сок, цитозоль, клеточный матрикс) – внутренняя среда клетки, на которую приходится до 55% ее общего объема. Она представляет собой сложную прозрачную коллоидную систему, в которой взвешены органеллы и включения, и содержит различные биополимеры: белки, полисахариды, нуклеиновые кислоты, а также ионы. Претерпевает превращения по типу гель-золь. В гиалоплазме происходит большая часть реакций межуточного обмена.

 

Рис. 3–1. Схема строения клетки (по R.V. Krstic, 1976). Я – ядро; ядрышко показано светлой стрелкой, кариолемма - двойными черными стрелками, ядерные поры – отдельными черными стрелками, М – митохондрии, КГ – комплекс Гольджи СГ – секреторные гранулы, Л – лизосома, КЦ - клеточный центр, МТ – микротрубочки ПЛ – плазмолемма, МП – микропиноцитозные пузырьки, МВ – микроворсинки, ПС – плотное соединение, ЩС – щелевое соединение, Д – десмосома.

 

 

ПЛАЗМОЛЕММА

Плазмолемма (внешняя клеточная мембрана, цитолемма, плазматическая мембрана) занимает в клетке пограничное положение и играет роль полупроницаемого селективного барьера, который, с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает ее связь с этой средой.

Функции плазмолеммы определяются ее положением и включают:

1. Распознавание данной клеткой других клеток и прикрепление к ним;

2. Распознавание клеткой межклеточного вещества и прикрепление к его элементам (волокнам, базальной мембране);

3. Транспорт веществ и частиц в цитоплазму и из нее (посредством ряда механизмов);

4. Взаимодействие с сигнальными молекулами (гормонами, медиаторами, цитокинами и др.) благодаря наличию на ее поверхности специфических рецепторов к ним;

5. Движение клетки (образование псевдо-, фило- и ламеллоподий) – благодаря связи плазмолеммы с сократимыми элементами цитоскелета. Структура плазмолеммы. Плазмолемма – самая толстая из клеточных мембран (7,5-11 нм); под электронным микроскопом она, как и другие клеточные мембраны, имеет вид трехслойной структуры, представленной двумя электронно-плотными слоями, которые разделены светлым слоем. Ее молекулярное строение описывается жидкостно-мозаичной моделью, согласно которой она состоит из липидного (фосфолипидного) бислоя, в который погружены и с которым связаны молекулы белков.

 

 

Рис. 3-2. Плазмолемма. ЛБ - липидный бислой: Г - головки (липидных моле- |
кул), X - хвосты, ИБ - интегральные белки, ПИБ - полуинтегральные белки, ПБ - пе-'|
риферические белки, МО - молекулы олигосахаридов, связанные с белками и липи- I
дами, АМФ - актиновые микрофиламенты, связанные с белками плазмолеммы. Слева
показаны поверхности мембраны, выявляемые в результате ее расщепления при за-;У
мораживании-скалывании. Ш

 

Липидный бислой представлен преимущественно молекулами фосфатидилхолина (лецитина) и фосфатидилэтаноламина (цефалина), состоящими из гидрофильной (полярной) головки и гидрофобного (неполярного) хвоста. В состав большинства мембран входит также холестерин (холестерол). В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи (рис.3-2). Состав липидов каждой из половин бислоя неидентичен. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. Некоторые липиды (гликолипиды) связаны с олигосахаридными цепями, которые выступают за пределы наружной поверхности плазмолеммы, придавая ей асимметричность. Электронно-плотные слои соответствуют расположению гидрофильных участков липидных молекул.

Мембранные белки составляют более 50% массы мембраны и удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов. Они обеспечивают специфические свойства мембраны (типы белков и их содержание в мембране отражают ее функцию) и играют различную биологическую роль (переносчиков, ферментов, рецепторов и структурных молекул). По своему расположению относительно липидного бислоя мембранные белки разделяются на две основные группы – интегральные и периферические (см. рис. 3-2).

Периферические белки непрочно связаны с поверхностью мембраны и обычно находятся вне липидного бислоя.

Интегральные белки либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погружены в липидный бислой; часть белков целиком пронизывает всю мембрану (трансмембранные белки). Интегральные белки плазмолеммы хорошо выявляются при использовании метода замораживания-скалывания. При этом плоскость скола обычно проходит через гидрофобную середину бислоя, разделяя его на два листка – наружный и внутренний (см. рис. 3-2). Интегральные белки имеют вид округлых внутримембранных частиц, большая часть которых связана с Р-поверхностью (от англ. protoplsmic) – протоплазматической, т.е. ближайшей к цитоплазме поверхности скола (наружной поверхности внутреннего листка), меньшая – на Е-поверхности (от англ. external) - наружной, более близкой к внешней среде поверхности скола (внутренней поверхности наружного листка).

Часть белковых частиц связана с молекулами олигосахаридов (гликопротеины), которые выступают за пределы наружной поверхности плазмолеммы, другая имеет липидные боковые цепи (липопротеины). молекулы олигосахаридов связаны также с липидами с составе гликолипидов. Углеводные участки гликолипидов и гликопротеинов придают поверхности клетки отрицательный заряд и образуют основу так называемого гликокаликса (от греч. glycos – сладкий и calyx – оболочка), который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности, покрывающего наружную поверхность плазмолеммы. Эти углеводные участки играют роль рецепторов, обеспечивающих распознавание клеткой соседних клеток и межклеточного вещества, а также адгезивные взаимодействия с ними. В состав гликокаликса некоторые авторы включают, помимо углеводных компонентов, периферические мембранные белки и полуинтегральные белки, функциональные участки которых находятся в над мембранной зоне (например, иммуноглобулины). В гликокаликсе находятся рецепторы гистосовместимости, некоторые ферменты (часть которых может производиться не самой клеткой, а адсорбироваться на ее поверхности), рецепторы гормонов.

Белковые молекулы мозаично распределены в липидном бислое однако они не жестко фиксированы в нем, а напротив, могут перемещаться в его плоскости. В некоторых условиях определенные белки способны накапливаться в отдельных участках мембраны, образуя агрегаты. Перемещение белковых частиц, по-видимому, не является произвольным, а контролируется внутриклеточными механизмами, в которых участвуют микрофиламенты (см. цитоскелет), прикрепленные к некоторым интегральным белкам, связанным с Р-поверхностью (см. рис. 3-2).

Мембранный транспорт веществ может включать однонаправленный перенос молекулы какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.

Пассивный транспорт включает простую и облегченную диффузию – процессы, которые не требуют затраты энергии. Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецефичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конформации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.

Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-переносчиком Na++-АТФазой), благодаря которому ионы К+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в нее. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Na+.

Облегченный транспорт ионов опосредуется особыми трансмембранными белками - ионными каналами, обеспечивающими избирательный перенос определенных Ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на (а) изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание лиганда (сигнальной молекулы или иона).

Эндоцитоз. Транспорт макромолекул в клетку осуществляется с помощью механизма эндоцитоза (от греч. endo – внутрь и cytos – клетка). Материал, находящийся во внеклеточном пространстве, захватывается в области впячивания (инвагинации) плазмолеммы, края которого смыкаются с формированием эндоцитозного пузырька или эндосомы - мелкого сферического образования, герметически окруженного мембраной (рис. 3-3 и 3-5). Далее содержимое эндосомы подвергается внутриклеточной переработке (процессингу). В частности, в эндосоме в условиях закисления среды происходит отделение лиганда от рецептора (последний в дальнейшем используется повторно) - см. ниже. Разновидностями эндоцитоза служат пиноцитоз и фагоцитоз.

 

Рис. 3-3. Пиноцитоз (1) и фагоцитоз (2). ПС - пиносомы, ОФ - объект фагоцитоза, ПП - псевдоподии, ФС - фагосома.

 

Пиноцитоз (от греч. pinein – пить и cytos – клетка) - захват и поглощение клеткой жидкости и (или) растворимых веществ; подразделяется на макроптоцитоз (диаметр эндосом 0.2-0.3 мкм) и микроптоцитоз (диаметр эвдосом - 70-100 нм).

Фагоцитоз (от греч. phagein - поедать и cytos – клетка) - захват и поглощение клеткой плотных, обычно крупных (размером более 1 мкм) частиц; обычно сопровождается образованием выпячиваний цитоплазмы - псевдоподий, охватывающих объект фагоцитоза и смыкающихся над ним (см. рис. 3-3).

Рецепторно-опосредованный эндоцитоз. Эффективность эндоцитоза существенно увеличивается, если он опосредован мембранными рецепторами, которые связываются с молекулами поглощаемого вещества или молекулами, находящимися на поверхности фагоцитируемого объекта – лигандами (от лат. ligare - связывать). В дальнейшем (после поглощения вещества) комплекс рецептор–лиганд расщепляется, и рецепторы могут вновь возвратиться в плазмолемму.

Примером рецепторно-опосредованного взаимодействия может служить фагоцитоз лейкоцитом бактерии (см. рис. 7-8). Поскольку на плазмолемме лейкоцита имеются рецепторы к иммуноглобулинам (антителам), скорость фагоцитоза резко возрастает, если поверхность бактерии покрыта антителами (опсонинами - от греч. opson – приправа).

Окаймленные пузырьки и ямки. Рецепторы макромолекул в плазмолемме, перемещаясь латерально по клеточной поверхности, могут, связывая свои лиганды, накапливаться в области формирующихся эндоцитозных ямок. Очень часто вокруг таких ямок и образующихся из них пузьфьков со стороны цитоплазмы собирается сетевидная оболочка из белка клатрина, которая на срезах имеет вид щетинистой каемки (рис. 3-4). В покрытых клатриновой оболочкой (окаймленных) ямках; рецепторные белки мембраны вытесняют все остальные; таким образом; ямки действуют как приспособления для накопления и сортировки молекул. Этим механизмом достигается и значительная экономия в ходепроцесса эндоцитоза: для поглощения определенного количества молекул лиганда требуется значительно меньше пузырьков, чем было в случае диффузного распределения комплексов рецептор–лиганд.

Окаймленная ямка достигает своего максимального размера (около 0.3 мкм) в течение 1 мин. и превращается в окаймленный пузырек. Его содержимое может подвергаться процессингу лишь после того, как через несколько секунд он утратит клатриновую оболочку. Если она сохраняется, пузырек не способен сливаться с другими структурами (аналогичными пузырьками, лизосомами), и его содержимое остается неизмененным. Окаймленные эндоцитозные пузырьки транспортируют иммуноглобулины, белки желточных включений (в цитоплазму овоцитов), факторы роста, липопротеины низкой плотности (ЛНП). Некоторые транспортные мембранные пузырьки в цитоплазме окружены неклатриновой белковой оболочкой.

 

 

Рис 3-4 Рецепторно-опосредованный эндоцитоз. ПЛ - плазмолемма, Л - лиганд, Р - рецепторы, ОЯ - окаймленная ямка, ОП - окаймленный пузырек, КО - клатриновая оболочка.

 

 

Рис 3-5 Эндоцитоз (1) н экзоцитоз (2). ВКП - внеклеточное пространство, ПЛ - плазмолемма, ЭНП - эндоцитозный пузырек, ЭКП - экзоцитозный пузырек, ФГБ - фузогенные белки.

Нарушение транспорта ЛНП описанным механизмом при врожденном наследственном заболевании - семейной гиперхолестеринемии - обусловлено отсутствием или наличием дефектных рецепторов ЛНП, неспособных связывать лиганд или накапливаться в окаймленных ямках. При этом поглощение клетками холестерина, поступающего с ЛНП, ослаблено, а его уровни в крови резко повышены, вызывая быстрое развитие атеросклероза и смерть больных в молодом возрасте от ищемической болезни сердца.

Экзоцитоз (от греч. exo – наружу и cytos – клетка) - процесс, обратный эндоцитозу, при котором мембранные экзоцитозные пузырьки приближаются к плазмолемме и сливаются с ней своей мембраной, которая встраивается в плазмолемму. При этом содержимое пузырька (продукты собственного синтеза клетки или транспортируемые ею молекулы, непереваренные и вредные вещества и др.) выделяется во внеклеточное пространство (см. рис. 3-5).

Судьба выделяемых экзоцитозом синтезированных клеткой молекул неодинакова: (1) прикрепляясь к клеточной поверхности, они могут становиться периферическими белками (например, антигенами); (2) они могут войти в состав межклеточного вещества (например, коллаген и гликозаминогликаны; (3) попадая во внеклеточную жидкость, могут выполнять роль сигнальных молекул (гормоны, цитокины).

Трансцитоз (от лат. trans – сквозь, через и греч. cytos – клетка) процесс, характерный для некоторых типов клеток, объединяющий признаки эндоцитоза и экзоцитоза. На одной поверхности клетки формируется эндоцитозный пузырек, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Процессы трансцитоза протекают очень активно в цитоплазме плоских клеток, выстилающих сосуды (эндотелиоцитах), особенно в капиллярах. В этих клетках пузырьки, сливаясь, могут образовывать временные трансцеллюлярные каналы, через которые транспортируются водорастворимые молекулы.

Ход образования эндоцитозных пузырьков опосредуется особыми (фузогенными - от лат. йшо - слияние) мембранными белками, которые концентрируются в участках инвагинации плазмолеммы. Эти же белки при экзоцитозе способствуют слиянию мембраны пузырька с плазмолеммой (см. рис. 3-5). Важную роль в процессах эндоцитоза и экзоцитоза играют элементы цитоскелета, в частности, микрофиламенты и трубочки (см. ниже).

Баланс процессов эндоцитоза и экзоцитоза. Эндоцитоз вследствие постоянной отшнуровки пузырьков с поверхности плазмолеммы должен приводить к уменьшению ее площади при одновременном увеличении объема клетки. Так, например, в макрофагах за 1 ч за счет эндоцитоза вносится до 25% объема цитоплазмы, а за 0.5 ч общая площадь поверхности эндоцитозных пузырьков составляет 100% площади плазмолеммы. При экзоцитозе, напротив, постоянно происходит увеличение площади плазмолеммы вследствие встраивания в нее мембраны экзоцитозных пузырьков. Так, в секреторной клетке ацинуса поджелудочной железы совокупная площадь мембраны секреторных гранул в 30 больше, чем поверхность плазмолеммы.

Вместе с тем, в действительности, активные процессы эндоцитоза и экзоцитоза не приводят к существенным изменениям площади поверхности плазмолеммы, так как они уравновешиваются формированием экзоцитозных и эндоцитозных пузырьков, соответственно, компенсирующим происходящую потерю мембраны или ее увеличение за счет противоположно направленного процесса. Эти явления отражают постоянно происходящий в клетке круговорот мембран, который получил название "мембранного конвейера".

Мембранные рецепторы являются преимущественно гликопротеинами, которые расположены на поверхности плазмолеммы клеток и обладают способностью высокоспецефически связываться со своими лигандами. Они выполняют ряд функций:

(1) регулируют проницаемость плазмолеммы, изменяя конформацию белков и ионных каналов;

(2) регулируют поступление некоторых молекул в клетку;

(3) действуют как датчики, превращая внеклеточные сигналы во внутриклеточные;

(4) связывают молекулы внеклеточного матрикса с цитоскелетом; эти рецепторы, называемые интегринами, играют важную роль в формировании контактов между клетками и клеткой и компонентами межклеточного вещества.

Рецепторы, связанные с каналами, взаимодействуют с сигнальной молекулой (нейромедиатора), которая временно открывает или закрывает воротный механизм, в результате чего инициируется или блокируется транспорт ионов через канал.

Каталитические рецепторы включают внеклеточную часть (собственно рецептор) и цитоплазматическую часть, которая функционирует как протеинкиназа (посредством таких рецепторов на клетки воздействуют инсулин и некоторые факторы роста).

Рецепторы, связанные с G-белками – трансмембранные белки, ассоциированные с ионным каналом или ферментом, – состоят из рецептора, взаимодействующего с сигнальной молекулой (первый посредник), и G-белка (гуанозин трифосфат-связывающего регляторного белка), включающего несколько компонентов, который передает сигнал на связанный с мембраной фермент (аденилат циклазу) или ионный канал, вследствие чего активируется второй внутриклеточный посредник – чаще всего циклический АМФ (цАМФ) или Са2+. Около 80% всех гормонов и нейромедиаторов действуют через рецепторы, связанные с эффекторными механизмами посредством G -белков.

В составе плазмолеммы находятся интегрины, называемые клеточными адгезионными молекулами (КАМ) – трансмембранные белки, служащие рецепторами для внеклеточных фибриллярных макромолекул фибронектина и ламинина (см. рис. 10-9). Фибронектин связывается с клетками и молекулами внеклеточного матрикса (коллагеном, гепарином, фибрином). Таким образом, фибронектин играет роль адгезионного мостика между клеткой и компонентами межклеточного вещества. Между тем, внутриклеточная часть молекулы интегрина через ряд других белков (талин, винкулин и α-актинин) связана с цитоскелетом.

Поверхностный аппарат клетки выделяется некоторыми авторами, которые рассматривают его как структурно и функционально единое образование, состоящее из трех компонентов: (1) надмембранного комплекса (гликокаликса), (2) плазмолеммы и (3) подмембранного комплекса (см. рис. 3-17). Первые два компонента описаны выше. Подмембранный комплекс образован специализированной периферической частью цитоплазмы, прилежащей к плазмолемме (кортикалъный слой) и содержащей элементы цитоскелета (см. ниже), преимущественно актиновые микрофиламенты. Более глубоко располагаются промежуточные филаменты и микротрубочки. Благодаря сокращению сети микрофиламентов, связанных с белками плазмолеммы, происходят изменения формы клетки и ее отдельных участков, формирование псевдоподий, выростов, перемещение клетки в пространстве.

 

СИНТЕТИЧЕСКИЙ АППАРАТ КЛЕТКИ

Синтетический аппарат клетки включает органеллы, участвующие в синтезе различных веществ, которые могут в дальнейшем использоваться самой клеткой или выделяться ею во внеклеточное пространство. Деятельность синтетического аппарата клетки, располагающегося в ее цитоплазме, контролируется ядром благодаря активности находящихся в нем генов. В синтетический аппарат входят рибосомы, эндоплазматическая сеть (ЭПС) и комплекс Гольджи.

 

 

<== предыдущая лекция | следующая лекция ==>
Получение МТБЭ | Рибосомы
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3173; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.046 сек.