Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Намагничивание и магнитные материалы

Наличие у вещества магнитных свойств проявляется в изменении параметров магнитного поля по сравнению с полем в немагнитном пространстве. Происходящие физические процессы в микроскопическом представлении связывают с возникновением в материале под воздействием магнитного поля магнитных моментов микротоков, объёмная плотность которых называется вектором намагниченности.

Возникновение намагниченности в веществе при помещении его в магнитное поле объясняется процессом постепенной преимущественной ориентации магнитных моментов циркулирующих в нём микротоков в направлении поля. Подавляющий вклад в создание микротоков в веществе вносит движение электронов: спиновое и орбитальное движение связанных с атомами электронов, спиновое и свободное движение электронов проводимости.

По магнитным свойствам все материалы подразделяются на парамагнетики, диамагнетики, ферромагнетики, антиферромагнетики и ферриты. Принадлежность материала к тому или иному классу определяется характером отклика магнитных моментов электронов на магнитное поле в условиях сильных взаимодействий электронов между собой в многоэлектронных атомах и кристаллических структурах.

Диамагнетики и парамагнетики относятся к материалам со слабы­ми магнитными свойствами. Значительно более сильный эффект намагничивания наблюдается у ферромагнетиков. Магнитная восп­риимчивость (отношение абсолютных значений векторов намагни­ченности и напряженности поля) у таких материалов положительная и может достигать нескольких десятков тысяч. У ферромагнетиков образуются области самопроизвольной спонтанной однонаправленной намагниченности - домены. Ферромагнетизм наблюдается у кристал­лов переходных металлов: железа, кобальта, никеля и у ряда сплавов. При наложении внешнего магнитного поля с возрастающей напря­женностью векторы спонтанной намагниченности, изначально ориен­тированные в разных доменах по-разному, постепенно выстраиваются в одном направлении. Этот процесс называется техническим намаг­ничиванием. Он характеризуется кривой начального намагничивания (рис. 4.1) - зависимостью индукции или намагниченности от напря­женности результирующего магнитного поля в материале. При отно­сительно небольшой напряженности поля (участок I) происходит быстрое возрастание намагниченности преимущественно из-за уве­личения размеров доменов, имеющих ориентацию намагниченности в положительной полусфере направлений векторов напряженности поля. Одновременно пропорционально сокращаются размеры доменов в отрицательной полусфере. В меньшей степени изменяются размеры тех доменов, намагниченность которых ориентирована ближе к пло­скости, ортогональной вектору напряженности.

При дальнейшем увеличении напряженности преобладают процес­сы поворота векторов намагниченности доменов по полю (участок II) до достижения технического насыщения (точка S). Последующему возрастанию результирующей намагниченности и достижению оди­наковой ориентации всех доменов по полю препятствует тепловое движение электронов. Область III близка по характеру процессов к парамагнетикам, где увеличение намагниченности происходит из-за ориентации немногих спиновых магнитных моментов, дезориентиро­ванных тепловым движением. С увеличением температуры дезори­ентирующее тепловое движение усиливается и намагниченность ве­щества уменьшается.

Для конкретного ферромагнитного материала существует определенная температура, при которой ферромагнитное упорядочение доменной структуры и намагниченности исчезают. Материал становится парамагнитным. Эта температура носит назва­ние точки Кюри. Для железа точка Кюри соответствует 790 °С для никеля - 340 °С, для кобальта - 1150 °С.

Снижение температуры ниже точки Кюри вновь возвращает ма­териалу магнитные свойства: доменную структуру с нулевой резуль­тирующей намагниченностью, если при этом отсутствовало внешнее магнитное поле. Поэтому разогрев изделий из ферромагнитных ма­териалов выше точки Кюри используют для их полного размагничи­вания.

 

Рис. 4.1. Кривая начального намагничивания

Процессы намагничивания ферромагнитных материалов подразделя­ются на обратимые и необратимые по отношению к изменению магнитного поля. Если после снятия возмущения внешнего поля намагниченность материала возвращается в исходное состояние, то такой процесс обратимый, в противном случае - необратимый. Обратимые изменения наблюдаются на малом начальном отрезке участка I кривой намагничивания (зона Релея) при малых смещениях доменных стенок и на участках II, III при повороте векторов намаг­ниченности в доменах. Основная часть участка I относится к необра­тимому процессу перемагничивания, который в основном определяет гистерезисные свойства ферромагнитных материалов (отставание из­менений намагниченности от изменений магнитного поля).

Петлей гистерезиса (рис. 4.2) называют кривые, отражающие изменение намагниченности ферромагнетика под воздействием цик­лически изменяющегося внешнего магнитного поля. При испытаниях магнитных материалов петли гистерезиса строятся для функций параметров магнитного поля В (Н) или М (Н), которые имеют смысл результирующих параметров внутри материала в проекции на зафик­сированное направление.

Если материал предварительно был полностью размагничен, то постепенное увеличение напряженности магнитного поля от нуля до Hs дает множество точек начальной кривой намагничивания (участок 0-1 на рис. 4.2). Точка 1 - точка технического насыщения s, Hs). Последующее снижение напряженности Н внутри материала до нуля (участок 1-2) позволяет определить предельное (максимальное) зна­чение остаточной намагниченности Br и дальнейшим уменьшением отрицательной напряженности поля добиться полного размагничива­ния B = 0 (участок 2-3) в точке Н = - НсВ - максимальной коэрцитивной силы по намагниченности. Далее материал перемагничивается в отрицательном направлении до насыщения (участок 3-4) при Н = - Hs. Изменение напряженности поля в положительную сторону замыкает предельный гистерезисный цикл по кривой 4-5-6-1.

Множество состояний материала внутри предельного гистерезисного цикла может быть достигнуто при изменении напряженности магнитного поля, соответствующем частным симметричным и несим­метричным гистерезисным циклам.

 

 

Рис. 4.2. Магнитный гистерезис: 1 – кривая начального намагничивания; 2 – предельный гистерезисный цикл; 3 – кривая основного намагничивания; 4 – симметричные частные циклы; 5 – несимметричные частные циклы

 

Частные симметричные гистерезисные циклы опираются вершинами на кривую основного намагничивания, которая и определяется как множество точек вершин этих циклов до совпадения с предельным циклом.

Частные несимметричные гистерезисные циклы образуются, если начальная точка не находится на кривой основного намагни­чивания при симметричном изменении напряженности поля, а также при несимметричном изменении напряженности поля в положитель­ном или отрицательном направлении.

В зависимости от значений коэрцитивной силы ферромагнитные материалы разделяют на магнитомягкие и магнитотвёрдые.

Магнитомягкие материалы используются в магнитных системах как магнитопроводы. Эти материалы имеют малую коэрцитивную силу, высокую магнитную проницаемость и индукцию насыщения.

Магнитотвёрдые материалы имеют большую коэрцитивную силу и в предварительно намагниченном состоянии используются как постоянные магниты – первичные источники магнитного поля.

Существуют материалы, которые по магнитным свойствам относятся к антиферромагнетикам. У них оказывается энергетически более выгодным антипараллельное расположение спинов соседних атомов. Созданы антиферромагнетики, обладающие значительным собственным магнитным моментом из-за асимметрии кристаллической решётки. Такие материалы называются ферримагнетиками (ферритами). В отличие от металлических ферромагнитных материалов, ферриты – полупроводники и в них значительно меньшие потери энергии на вихревые токи в переменных магнитных полях.

 

<== предыдущая лекция | следующая лекция ==>
Силовые взаимодействия в электромагнитном поле | Коммутация электрической цепи
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.