Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Магнитные стали и сплавы




Стали с особым тепловым расширением.

Сплавы с заданным температурным коэффициентом расширения широко применяют в машиностроении и приборостроении. Наиболее распространены сплавы Fe-Ni, у которых коэффициент термического расширения a=10-6 оС-1 (мм/мм оС). При температурах от –100 до +100 оС с увеличением количества Ni до 36% a резко уменьшается, а при более высоком содержании Ni – вновь возрастает.

При температуре 600-7000С такого явления не наблюдается и коэффициент линейного расширения в зависимости от состава изменяется плавно, что объясняется ферромагнитной природой этих сплавов.

Это свойство сплавов Fe-Ni широко используется в технике. Например, детали, которые должны сохранять постоянство размеров при нагреве до 100 оС и охлаждении до –100 оС, в частности, детали геодезических приборов, изготавливают из аустенитного сплава 36Н (менее или равно 0,05% С, 36% Ni), получившего название инвар. Сплав 36Н имеет минимальное значение коэффициента расширения в системе Fe-Ni – a=1,5×10-6мм/мм оС или [оС-1].

Для впаев проводников в стеклянные вакуумные приборы применяют сплавы Fe-Ni, дополнительно легированные Со или Cu. Они имеют равный со стеклом коэффициент расширения и близкую температурную зависимость последнего.

Для вакуумных спаев с молибденовым стеклом применяют сплав 29НК (ковар) 29% Ni и 18% Со, у которого a=(4,6-5,5)×10-6 С-1(мм/мм оС). При нагреве сплава 29НК на его поверхности образуется пленка оксидов, взаимодействующая со стеклом. Это приводит к образованию плотного сцепления между стеклом и сплавом.

Для изготовления деталей, спаиваемых со стеклом, например, в телевизионных кинескопах, имеющих a£8,7×10-6мм/(ммоС), применяют и более дешевые ферритные железо-хромистые сплавы 18ХТФ и 18ХМТФ (0,35% Мо, 0,35% V, 18% Cr, 0,6% Ti). По своим свойствам сплавы одинаковы, но сплав 18ХТФ дешевле, т.к. он не содержит Мо.

Магнитные сплавы разделяются на магнитотвердые, применяющиеся для постоянных магнитов и магнитомягкие, предназначающиеся для сердечников трансформаторов, электродвигателей и генераторов.

Магнитотвердые сплавы. Постоянные магниты получают из твердых закаленных сталей, безуглеродистых стареющих сплавов или прессуются и спекаются из мельчайших порошков.

Они должны обладать возможно большей магнитной энергией (ВН), максимально высокой и устойчивой коэрцитивной силой Нс, препятствующей их размагничиванию; высоким остаточным намагничиванием – остаточной индукцией Br; не изменять своих свойств с течением времени

Наибольшая трудность для магнитотвердых материалов обуславливается получением высокой коэрцитивной силы Нс. Для получения высокой коэрцитивной силы стали должны иметь неравновесную структуру, обычно мартенсит с большим количеством дефектов строения (дислокаций, блоков, границ зерен и т.д.), являющихся источниками искажений кристаллической решетки и внутренних напряжений.

Наивыгоднейшая структура с повышенными напряжениями Ш рода у стали для постоянных магнитов – мартенсит с частицами цементита или других карбидов, получаемый после закалки и старения. Например, высокоуглеродистая хромистая сталь для постоянных магнитов ЕХ3 отличается значительной устойчивостью аустенита и хорошей прокаливаемостью. Ее подвергают закалке при 850 оС в масле и старению при 100 оС в течение 5-ти часов. При этом получается достаточная коэрцитивная сила и остаточная индукция.

Легирующие элементы повышают коэрцитивную силу, остаточную индукцию и улучшают температурную стабильность и стойкость постоянного магнита к механическим ударам. Хромистые, вольфрамовые и кобальтовые сплавы легко обрабатываются давлением и резанием, но обладают относительно малой магнитной энергией, поэтому их применяют для неответственных магнитов массового производства.

Магнитны сплавы, содержащие никель и алюминий сокращенно называют альни, с добавлением кобальта – альнико.

Сплавы альни и альнико обладают большой твердостью, хрупки и плохо обрабатываются, поэтому магниты из них изготавливают литыми и обрабатывают шлифованием. Небольшие магниты весом 50-100 г выгоднее изготавливать из мелких порошков методами прессования и спекания.

Магниты из микропорошков Fe или Fe и Со по магнитным свойствам находятся на уровне литых магнитов альни и альнико.

Магнитомягкие стали, электротехническая сталь и сплавы обладают малой коэрцитивной силой Нс и очень высокой магнитной проницательностью μ. Наиболее вредными примесями в магнитомягких сталях и сплавах являются “С”, S, О2 и N2, которые почти не растворяются в феррите. Они присутствуют в виде частичек цементита.

В качестве магнитомягкого материала можно использовать чистое железо. Электротехническое железо (марки ЭА, ЭАА) используют для изготовления сплошных сердечников, работающих в условиях постоянной температуры магнитного потока, когда потери на вихревые токи не значительны. Такой металл отличается высокой магнитной проницательностью и малой коэрцитивной силой, однако электрическое сопротивление его низкое и поэтому для электрических машин и трансформаторов оно непригодно.

Для изготовления трансформаторов применяют тонколистовую кремнистую сталь. Маркируется она следующим образом: Э-31 – 1-я цифра указывает приблизительное количество Si (примерно 2,-3,8%). Вторая цифра обозначает уровень электрических и магнитных свойств. Далее могут стоять один или два нуля. Один нуль указывает, что сталь холоднокатаная текстурованная, т.е. с высокими электромагнитными свойствами вдоль направления прокатки. Два нуля – сталь холоднокатаная, малотекстурованная.

Для слаботочной промышленности требуются сплавы с высокой начальной магнитной проницательностью в слабых магнитных полях. Такие сплавы называются пермаллоями. Они отличаются очень высоким содержанием никеля 76,5-79,5%. Свою высокую начальную магнитную проницательность пермаллои получают после сложной термической обработки. Сплав подвергают высокотемпературному нагреву в атмосфере Н2 для создания крупнозернистости, удаления углерода и снятия внутренних напряжений, после чего производится охлаждение в магнитном поле. Более дешевые никелевые сплавы, содержащие 45-50% никеля, называют гайперниками, но их свойства ниже свойств термически обработанных пермаллоев.

Легирование Fe-Ni сплавов Si, Mo, Mn и Cu, увеличивая у них электрическое сопротивление, позволяет применять их на повышенных и высоких частотах, снижает их восприимчивость к наклепу и обеспечивает постоянство свойств.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1194; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.