Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ускорители заряженных частиц и их использование в медицине




Ускорителем называют устройство, в котором под действием электрических и магнитных полей формируется пучок заряженных частиц высокой энергии.

Различают линейные и циклические ускорители. В линейных ускорителях частицы движутся по прямолинейной траектории, в циклических — по окружности или спирали.

Наиболее известным циклическим ускорителем является циклотрон (рис. 27.14), в котором под действием магнитного поля индукции , направленной перпендикулярно плоскости рисунка, заряженная частица движется по окружностям. Переменное электрическое поле между дуантами 1 ускоряет частицу. Согласно формуле (13.23), период Т вращения частицы не зависит от ее скорости и радиуса траектории, поэтому время прохождения частицей любой полуокружности в каждом дуанте одинаково. Оно соответствует половине периода колебаний электрического поля. Таким образом, магнитное поле обеспечивает вращение час­тицы по окружности, а электрическое поле — изменение ее кинетической энергии. Источник частиц 2 находится вблизи центра циклотрона, пучок ускоренных частиц 3 вылетает из циклотрона после ускорения.

Циклотрон способен ускорять протоны до 20—25 МэВ. Ограничение энергии ускоряемых частиц обусловлено релятивистской зависимостью в формуле (13.23) массы1 (1 В настоящее время в физической литературе принято использовать релятивистскую зависимость импульса от скорости частицы. Здесь эти подробности не рассматриваются) от скорости, что приводит к увеличению периода вращения частицы с возрастанием ее скорости. В результате этого нарушится синхронность между движением частицы и изменением электрического поля. Электрическое поле будет не ускорять, а замедлять частицы. В связи с этим в циклотроне нельзя ускорять электроны, так как они быстро достигают релятивистских скоростей.

Из этого затруднения можно найти выход, изменяя частоту электрического поля в соответствии с изменением периода вращения заряженной частицы. Такой ускоритель называют фазотроном (синхроциклотроном), он способен ускорять протоны до энергии ~ ГэВ.

Можно предположить и другое решение вопроса: по мере возрастания массы увеличивать индукцию магнитного поля. Как видно из формулы (13.23), в этом случае можно сохранить период вращения частицы неизменным. Ускоритель такого типа называют синхротроном.

Для ускорения тяжелых частиц до энергий порядка гигаэлектрон-вольт и выше используют синхрофазотрон, в котором изменяют и маг­нитное поле, и частоту электрического поля.

Довольно распространенным ускорителем электронов невысоких энергий является бетатрон. В отличие от других циклических ускорителей в нем электрическое поле не подается от внешних источников, а создается при изменении магнитного поля (явление электромагнитной индукции).

На рис. 27.15, а схематически показано, что при изменении магнитного поля электромагнита 1 возникает, согласно теории Максвелла, вихревое электрическое поле. В зазоре 2 магнита расположена вакуумная камера, в которой ускоряются электроны. Силовые линии электрического поля в виде концентрических окружностей проходят в плоскости, перпендикулярной плоскости рис. 27.15, а. На рис. 27.15, б изображена отдельная линия напряженности электрического поля, которая приближенно совпадает с траекторией электрона. На этом рисунке линии вектора в основном перпендикулярны плоскости чертежа, магнитная индукция возрастает.

Электрон удерживается на орбите магнитным полем (сила Лоренца) и ускоряется электрическим.

Бетатроны способны ускорять электроны до десятков мега-электрон-вольт. В настоящее время бетатроны используют главным образом в прикладных целях, в том числе и медицинских. Остановимся на медицинских приложениях ускорителей.

Ускорители заряженных частиц применяют как средство лучевой терапии в двух основных направлениях.

Во-первых, используют тормозное рентгеновское излучение, возникающее при торможении электронов, ускоренных бетатроном. Использование тормозного излучения оказывается более эффективным, чем гамма-терапия.

Во-вторых, используют прямое действие ускоренных частиц: электронов, протонов. Электроны ускоряются бетатроном, а протонный пучок получают от других ускорителей. Как видно из рис. 27.3, заряженные частицы, в том числе и протоны, наибольшую ионизацию производят перед остановкой. Поэтому при попадании пучка протонов в биологический объект извне наибольшее воздействие будет оказано не на поверхностные слои, а на опухолевые ткани, которые расположены в глубине организма. В этом основная выгода применения заряженных частиц для лучевой терапии глубинных опухолей. Поверхностные слои в этом случае повреждаются минимально.

Малое рассеяние протонов позволяет формировать узкие пучки и, таким образом, очень точно воздействовать на опухоль. Наряду с лечебным применением ускорителей в последние годы открылись возможности использования их в диагностике. Здесь можно указать две области.

Одна — ионная медицинская радиография. Суть метода заключается в следующем. Пробег тяжелых заряженных частиц (a-частицы, протоны) зависит от плотности вещества. Поэтому если регистрировать поток частиц до и после прохождения объекта, то можно получить сведения о средней плотности вещества.

Таким образом, так же как и при рентгенографии, возможно различать структуры большей и меньшей плотности. Преимущество у этого метода перед рентгенографией — более низкая контрастность, что позволяет лучше различать структуру мягких тканей.

Другая область применения связана с синхротронным излучением.

Синхротронным излучением называют интенсивное ультрафиолетовое и мягкое рентгеновское излучение, которое испускают электроны, движущиеся по круговой орбите со скоростями, близкими к скорости света. Впервые это излучение как световое наблюдалось на синхротронах, поэтому оно и называется синхротронным. Синхротронное излучение в целях диагностики применяют аналогично обычному рентгеновскому излучению. Одно из преимуществ синхротронного излучения перед рентгеновским заключается в возможности поглощения этого излучения преимущественно некоторыми элементами, например иодом, который может иметь повышенную концентрацию в тканях. Отсюда возникают условия для ранней диагностики злокачественных опухолей.

Отметим, что синхротронное излучение начинают также применять и в лучевой терапии.

 

Республиканские допустимые уровни

содержания радионуклидов цезия-137 и стронция-90 в пищевых продуктах




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1640; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.