Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дыхателная система




 

Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ.

Трахея в нижней своей части делится на два бронха, каждый из которых, входя в легкие, древовидно разветвляется. Конечные мельчайшие разветвления бронхов (бронхиолы) переходят в закрытые альвеолярные годы, в стенках которых имеется большое количество шаровидных образований — легочных пузырьков (альвеол). Каждая альвеола окружена густой сетью капилляров. Общая поверхность всех легочных пузырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2.

 

Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой — плеврой, такая же оболочка выстилает изнутри полость грудной клетки. Пространство, образованное между этими листами плевры, называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного при выдохе на 3—4 мм рт. ст., при вдохе — на 7—9.

Процесс дыхания — это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) характер. В покое обмен воздуха в легких происходит в результате ритмичных дыхательных движений грудной клетки. При понижении в грудной полости давления в легкие в достаточной степени пассивно, за счет разности давлений засасывается порция воздуха — происходит вдох. Затем полость грудной клетки уменьшается, и воздух из легких выталкивается — происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры. В покое при вдохе полость грудной клетки расширяет специальная дыхательная мышца — диафрагма, а также наружные межреберные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выражение пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается. При интенсивной физической работе в выдохе участвуют мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови — в атмосферный воздух, называют внешним дыханием. Следующий этап - перенос газов кровью, и, наконец, тканевое (или внутреннее) дыхание — потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии, чтобы обеспечить процессы жизнедеятельности организма.

 

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров кислород переходит из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород переходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма. Переход кислорода и углекислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов путем диффузии (перехода) обусловлен разностью парциального давления каждого из этих газов. Парциальное в буквальном смысле слова значит частичное. О парциальном дав­лении речь идет тогда, когда имеется какая-либо газовая смесь. Воздух представляет собой смесь газов—азота, кислорода, углекислого газа и некоторых других. Парциальным давлением называется та часть общего давления газовой смеси, которая приходится на долю данного газа. Эта часть зависит от процентного содержания газа в смеси. Чем оно больше, тем выше парциальное давление данного газа.

Так, например, при атмосферном давлении воздуха 760 мм рт. ст. парциальное давление кислорода (рО2) в нем равно 159 мм рт. ст., а в альвеолярном — 102, в артериальной крови — 100, в венозной — 40 мм рт. ст. В работающей мышечной ткани рО2 может снижаться до нуля. Из-за разницы в парциальном давлении кислорода происходит его поэтапный переход в легкие, далее через стенки капилляров в кровь, а из крови в клетки тканей.

Углекислый газ из клеток тканей поступает в кровь, из крови — в легкие, из легких — в атмосферный воздух, так как градиент парциального давления углекислого газа (СО2) направлен в обратную относительно рО2 сторону (в клетках СО2 — 50—60, в крови — 47, в альвеолярном воздухе — 40, в атмосферном воздухе — 0,2 мм рт. ст.).

 

Показателями работоспособности органов дыхания яв­ляются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, кислородный зап­рос, потребление кислорода, кислородный долг и др.

Дыхательный объем — количество воздуха, проходя­щее через легкие при одном дыхательном цикле (вдох, выдох, дыхательная пауза). Величина дыхательного объе­ма находится в прямой зависимости от степени трениро­ванности к физическим нагрузкам и колеблется в состоя­нии покоя от 350 до 800 мл. В покое у нетренированных людей дыхательный объем находится на уровне 350-500 мл, у тренированных —800 мл и более.

При интенсивной физической работе дыхательный объем может увеличиваться до 2500 мл.

 

Частота дыхания — количество дыхательных циклов в 1 мин. Средняя частота дыхания у нетренированных лю­дей в покое — 16-20 циклов в 1 мин, у тренированных за счет увеличения дыхательного объема, частота дыхания сни­жается до 8-12 циклов в 1 мин. У женщин частота дыха­ния на 1-2 цикла больше.

При спортивной деятельности частота дыхания у лыж­ников и бегунов увеличивается до 20-28 циклов в 1 мин., у пловцов — 36-45; наблюдались случаи увеличения час­тоты дыхания до 75 циклов в 1 мин.

 

Жизненная емкость легких (ЖЕЛ) — максимальное количе­ство воздуха, которое может выдохнуть человек после пол­ного вдоха (измеряется методом спирометрии).

Средние величины жизненной емкости легких: у не­тренированных мужчин — 3500 мл, у женщин — 3000; у тренированных мужчин — 4700 мл, у женщин — 3500. При занятиях циклическими видами спорта на выносли­вость (гребля, плавание, лыжные гонки и т.п.) жизненная емкость легких может достигать у мужчин 7000 мл и бо­лее, у женщин — 5000 мл и более.

 

Легочная вентиляция — объем воздуха, который про­ходит через легкие за 1 мин. Легочная вентиляция опре­деляется путем умножения величины дыхательного объе­ма на частоту дыхания. Легочная вентиляция в покое на­ходится на уровне 5000-9000 мл (5-9 л).

При физической работе этот объем достигает 50 л. Мак­симальный показатель может достигать 187,5 л при дыха­тельном объеме 2,5 л и частоте дыхания 75 дыхательных циклов в 1 мин.

 

Кислородный запрос — количество кислорода, необхо­димое организму для обеспечения процессов жизнедеятель­ности в различных условиях покоя или работы в 1 мин. В покое в среднем кислородный запрос равен 200-300 мл. При беге на 5 км, например, он увеличивается в 20 раз и становится равным 5000-6000 мл. При беге на 100 м за 12 с, при пересчете на 1 мин кислородный запрос увели­чивается до 7000 мл.

Суммарный, или общий, кислородный запрос — это коли­чество кислорода, необходимое для выполнения всей работы.

 

В состоянии покоя человек потребляет 250-300 мл кис­лорода в 1 мин. При мышечной работе эта величина воз­растает тем больше, чем работа тяжелее.

Наибольшее количество кислорода, которое организм может потребить в минуту при определенно-интенсивной мышечной работе, называется максимальным потреблени­ем кислорода (МПК). Работа, при которой человек достигает своего МПК, должна длиться не менее 3 мин. МПК зависит от состояния сердечно­сосудистой и дыхательной систем, кислородной емкости крови, активности протекания процессов обмена веществ и других факторов.

Для каждого человека существует индивидуальный предел МПК, выше которого потребление кислорода не­возможно. У людей, не занимающихся спортом, МПК равно 2,0-3,5 л/мин, у спортсменов-мужчин может до­стигать 6 л/мин и более, у женщин — 4 л/мин и более.

Величина МПК характеризует функциональное состоя­ние дыхательной и сердечно-сосудистой систем, степень тренированности организма к длительным физическим на­грузкам.

Абсолютная величина МПК зависит также от размеров тела, поэтому для ее более точного определения рассчиты­вают относительное МПК на 1 кг массы тела.

Для оптимального уровня здоровья необходимо обла­дать способностью потреблять кислород на 1 кг массы тела: женщинам не менее 42, мужчинам — не менее 50 мл.

МПК является показателем аэробной (кислородной) производительности организма. Аэробная производительность — это способность человека совершать очень тяжелую работу, обеспечивая свои энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Установлено, что даже хорошо тренированный человек может работать при потреблении кислорода на уровне 90—95% от своего МПК не более 10—15 мин.

Для повышения аэробной производительности обычно используется работа, вызывающая частоту сердечных сокращений, равную 150—180 в 1 мин.

 

Когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребности в энергии, возникает кислородное голодание, или гипоксия.

Гипоксия наступает по различным причинам. Внешние причины — загрязнение воздуха, подъем на высоту (в горы, полет на самолете) и др. В этих случаях падает парциальное давление кислорода в атмосферном и альвеолярном воздухе и снижается количество кислорода, поступающего в кровь для доставки к тканям. Внутренние причины возникновения гипоксии зависят от состояния дыхательного аппарата и сердечно-сосудистой системы, проницаемости стенок альвеол и капилляров, количества эритроцитов в крови и процентного содержания в них гемоглобина, от степени проницаемости оболочек клеток тканей и их способности усваивать доставляемый кислород.

При интенсивной мышечной работе, как правило, наступает двигательная гипоксия.

Существует точная зависимость между мощностью работы, количеством энергии, которую должны выделить химические вещества, и количеством кислорода, необходимым для восстановления этих веществ. То количество кислорода, которое требуется для осуществления данной работы, называется кислородным запросом.

Различают два вида кислородного запроса: 1 —суммарный кислородный запрос, т. е. количество кислорода, необходимое для совершения всей работы, например для пробегания какой-либо дистанции; 2 — минутный кислородный запрос — количество кислорода, требующееся для выполнения работы в каждую минуту.

При определении кислородного запроса учитывается только тот кислород, который потребляется сверх уровня покоя и, следова­тельно, идет на выполнение работы. Чем выше мощность работы, тем больше минутный кислородный запрос. Например, бег на 800 м по мощности, т. е. по скорости передвижения, значительно превышает марафонский бег. Минутный кислородный запрос при нем составляет 12—15 л, а при марафонском беге — всего около 3—4л.

Суммарный кислородный запрос тем больше, чем длительнее работа. Так, при беге на 800 м он равен 25—30 л, а на преодоление марафонской дистанции требуется 450—500 л кислорода. При работе большой мощности минутный кислородный запрос может достигать 15—20 л в 1 мин. и более. Однако максимум по требления кислорода за 1 мин. не превышает 6—7 л даже у спортсменов международного класса.

Можно ли выполнять работу, если минутный кислородный запрос превышает МПК? Чтобы ответить на этот вопрос, надо вспомнить, для чего используется кислород при мышечной работе. Выше уже говорилось о том, что он необходим для восстановления богатых энергией химических веществ, обеспечивающих мышечное сокращение. Кислород обычно взаимодействует с глюкозой, и она, окисляясь, освобождает энергию. Но глюкоза может расщепляться и без кислорода, т. е. анаэробным путем, при этом тоже выделяется энергия. Следовательно, работа мышц может быть обеспечена и при недостаточном поступлении кислорода в организм. Однако в этом случае образуются продукты обмена веществ, главным образом кислоты, изменяющие рН внутренней среды организма. При накоплении слишком большого количества этих продуктов человек бывает вынужден прекратить работу. Для ликвидации этих продуктов обмена тоже нужен кислород, ибо они разрушаются путем окисления. Но окисление это может происходить уже после окончания работы, в восстановительном периоде.

Таким образом, часть энергии, необходимой для восстановления веществ, обеспечивающих мышечные сокращения, может быть получена без кислорода. Образующиеся при этом продукты обмена окисляются уже после финиша. То количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется кислородным долгом.

 

 

Кислородный долг — разница между кислородным зап­росом и количеством кислорода, которое потребляется во время работы. Например, при беге на 5000 м за 14 мин кислородный запрос равен 7 л/мин, а предел (по­толок) МПК у данного спортсмена — 5,3 л/мин; следова­тельно, в организме каждую минуту возникает кислород­ный долг, равный 1,7 л кислорода, т.е. такое количество кислорода, которое необходимо для окисления продуктов обмена веществ, накопившихся при физической работе.

Величина максимально возможного суммарного долга имеет предел (потолок). У нетренированных людей он находится на уровне 4-7 л кислорода, у тренированных — может достигать 20-22 л.

В зависимости от длительности и интенсивности работы на его ликвидацию уходит от нескольких минут до полутора часов.

Физическая тренировка способствует адаптации тканей к гипоксии (недостатку кислорода), повышает способность кле­ток тела к интенсивной работе при недостатке кислорода, анаэробную производительность организма.

Анаэробной производительностью называют способность человека работать в условиях недостатка кислорода за счет анаэробных источников энергии. Анаэробную производительность можно измерит, определяя величину максимально возможного кислородного долга.

Различают две части кислородного долга. Первая, называемая алактатной, идет на восстановление креатинфосфата. Величина этой части кислородного долга у спортсменов может составлять 2—4 л. Вторая, большая, часть, кислородного долга идет на ликвидацию накопившейся в крови при работе молочной кислоты. Эту долю кислородного долга называют лактатной (лактаты— соли молочной кислоты). Молочная кислота в восстановительном периоде после работы частично окисляется, частично используется для образования гликогена в печени и мышцах.

Высокая анаэробная производительность должна быть у спортсменов, работа которых лежит в пределах субмаксимальной мощности. С увеличением длины дистанции роль анаэробной производительности для достижения высокого спортивного результата снижается.

Выше уже говорилось, что основную долю кислородного долга составляет его лактатная часть, обусловленная накоплением в крови молочной кислоты. Содержание ее может доходить до 300 мг в 100 мл крови (в покое 10—15 мг). Чтобы продолжать работу при наличии в крови такого количества молочной кислоты, организм должен иметь мощные буферные системы. И действительно, у спортсменов, обладающих высокой анаэробной производительностью, мощность буферных систем крови и других тканей повышена. Но все же буферные системы не всегда могут полностью нейтрализовать кислые продукты обмена веществ, поступающие в кровь. Тогда возникает сдвиг рН крови в кислую сторону. Чтобы спортсмен мог выполнять работу большой мощности в условиях резких изменений во внутренней среде, его ткани должны быть приспособлены к работе при недостатке кислорода и низком рН. Такое приспособление тканей служит одним из главных факторов, обеспечивающих высокую анаэробную производительность.

 

 

Гипокинезия и гиподинамия

 

Гипокинезия (греч. hypo — понижение, уменьшение, недостаточность; kinesis — движение) — особое состояние организма, обусловленное недостаточностью двигательной активности. В ряде случаев это состояние приводит к гиподинамии. Гиподинамия (греч. hypo — понижение; dynamis — сила) — совокупность отрицательных морфо-функциональных изменений в организме вследствие длительной гипокинезии. Это атрофические изменения в мышцах, общая физическая детренированность, детренированность сердечно-сосудистой системы, понижение ортостатической устойчивости, изменение водно-солевого баланса, системы крови, деминерализация костей и т.д. В конечном счете снижается функциональная активность органов и систем, нарушается деятельность регуляторных механизмов, обеспечивающих их взаимосвязь, ухудшается устойчивость к различным неблагоприятным факторам; уменьшается интенсивность и объем афферентной информации, связанной с мышечными сокращениями, нарушается координация движений, снижается тонус мышц (тургор), падает выносливость и силовые показатели. Наиболее устойчивы к развитию гиподинамических признаков мышцы антигравитационного характера (шеи, спины). Мышцы живота атрофируются сравнительно быстро, что неблагоприятно сказывается на функции органов кровообращения, дыхания, пищеварения. В условиях гиподинамии снижается сила сердечных сокращений в связи с уменьшением венозного возврата в предсердия, сокращаются минутный объем, масса сердца и его энергетический потенциал, ослабляется сердечная мышца, снижается количество циркулирующей крови в связи с застаиванием ее в депо и капиллярах. Тонус артериальных и венозных сосудов ослабляется, падает кровяное давление, ухудшаются снабжение тканей кислородом (гипоксия) и интенсивность обменных процессов (нарушения в балансе белков, жиров, углеводов, воды и солей). Уменьшается жизненная емкость легких и легочная вентиляция, интенсивность газообмена. Все это сопровождается ослаблением взаимосвязи двигательных и вегетативных функций, неадекватностью нервно-мышечных напряжений. Таким образом, при гиподинамии в организме создается ситуация, чреватая «аварийными» последствиями для его жизнедеятельности. Если добавить, что отсутствие необходимых систематических занятий физическими упражнениями связано с негативными изменениями в деятельности высших отделов головного мозга, его подкорковых структурах ц образованиях, то становится понятно, почему снижаются общие защитные силы организма и возникает повышенная утомляемость, нарушается сон, снижается способность поддерживать высокую умственную или физическую работоспособность.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 2084; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.