Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Z – преобразование




ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА.

ЛЕКЦИЯ 16

План лекции

1. Понятие о D и Z - преобразованиях.

2. Область применения D и Z - преобразований.

3. Обратные D и Z - преобразования.

 

 

 

В прикладных исследованиях, связанных с использованием решетчатых функций, широко применяется дискретное преобразование Лапласа (Д – преобразование) и Z – преобразование. По аналогии с обычным преобразованием Лапласа дискретное задается в виде

где (1)

Символически Д – преобразование записывается в виде

Для смещенных решетчатых функций

(2)

где - смещение.

Z – преобразование получается из Д – преобразования подстановкой и задается соотношением

(3)

Для смещенной функции

Функция называется оригиналом, если

1)

2) существует показатель роста, т. е. найдутся такие и , что

(4)

Наименьшее из чисел (или предел, к которому стремится наименьшее число), для которого справедливо неравенство (4), называется абсциссой абсолютной сходимости и обозначается

Теорема.

Если функция является оригиналом, то изображение определено в области Re p > и является в этой области аналитической функцией.

Покажем, что при Re p > ряд (1) абсолютно сходится. Имеем

т. к. указанная сумма представляет собой сумму членов убывающей геометрической прогрессии с показателем Известно, что такая прогрессия сходится. Величину можно взять сколь угодно близкой величине , т. е. первая часть теоремы доказана.

Вторую часть теоремы примем без доказательств.

Изображение является периодической функцией с мнимым периодом

При изучении изображения нет смысла рассматривать его на всей комплексной плоскости, достаточно ограничиться изучением в любой полосе шириной Обычно на комплексной плоскости используется полоса, которая называется основной. Т. о. Можно считать, что изображения определено в полу полосе

и является в этой полу полосе аналитической функцией.

 
 

 

 

 
 

Найдем область определения и аналитичности функции F(z), положив . Покажем, что полу полоса плоскости p преобразованием переводится в область на плоскости z: .

Действительно, отрезок , ограничивающий полу полосу на плоскости p, переводится на плоскости z в окрестность: .

Обозначим через линию, в которую преобразование переводит отрезок . Тогда

т. о.

окрестность .

Т. о. Z – преобразование F(z) определено в области и является в этой области аналитической функцией.

Обратное Д – преобразование позволяет по изображению восстановить решетчатую функцию

 
 

(5)

 
 

Докажем справедливость равенства.

Получим из равенства (5) формулу для обратного Z – преобразования. Воспользуемся подстановкой . Рассмотренным выше способом легко установить, что отрезок с помощью преобразования переводится на плоскости Z в окрестность

.

Тогда из (5) следует

(6)

Равенство (6) задает обратное Z – преобразование, т. е. позволяет по функции F(z) восстановить решетчатую функцию f(nT).

Т. к. , то все особые точки функции F(z) и, следовательно, функции лежат внутри окрестности

Из (6) следует, что

Вычеты берутся по всем особым точкам.

 





Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 589; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.