Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Динаміка гармонічних коливань

Для визначення характеру руху механічної системи необхідно, використовуючи закони динаміки або збереження енергії, отримати рівняння руху системи, і якщо воно приводиться до вигляду , то можна однозначно твердити, що дана система є гармонічним осцилятором, частота w0 якого дорівнює квадратному кореню з коефіцієнта при х. Розглянемо декілька прикладів і потім узагальнимо отримані результати.

Пружній маятник. Нехай кулька маси m підвішена на невагомій пружині жорсткості k, здійснює вертикальні коливання. У положенні рівноваги, в точці О, сила тяжіння зрівноважується силою пружності: (5). Якщо кульку вивести з положення рівноваги і вва­жати додатним напрямом зміщення х від положення рівноваги вниз, то рівняння динаміки для кульки матиме такий вигляд:

, (6)

а враховуючи (5) отримуємо: , або після перетворення . Легко перевірити підстановкою, що розв'язок цього рівняння виражає гар­монічне коливання з циклічною частотою і періодом . Отже, кулька, підвішена на пружині й виведена з положення рівноваги, перебуватиме в гармонічному коливанні. Характерно, що її коливання не залежить від сили тяжіння, а лише від повертаючої сили пружності, тому вони будуть однаковими в усіх місцях на Землі і навіть на інших планетах.

Математичний маятник. Математичним маятником називають мате­ріальну точку, підвішену на невагомій і нерозтяжній нитці, що коливається у вертикальній площині під дією сили тяжіння. Нехай маса маятника m, а довжина нитки підві­шування l. З відхиленням маятника від положення рівноваги виникає повертаюча сила : , де – кутове відхилення маятника. Складова зрівноважується реакцією нитки. При малих кутових відхиленнях sinj»j, тому повертаючу силу можна записати у вигляді: , де х – зміщення маятника від положення рівноваги, а знак мінус показує, що повертаюча сила протилежна до напряму зміщення. Враховуючи, що за другим законом Ньютона , отримуємо: , звідки . Період коливання математичного маятника: . З формули періоду коливання випливають такі закономірності коливання математичного маятника:

- період коливання маятника не залежить від його маси;

- період коливання не залежить від амплітуди;

- період коливання прямо пропорційний квад­ратному кореню з довжини маятника і обернено пропорційний квадратному кореню з прискорення вільного падіння.

Фізичний маятник. Фізичним маятником називають тверде тіло довільної форми, яке коливається під дією тяжіння навколо горизонтальної вісі. Якщо маятник вивести з положення рівноваги, то на нього діятиме повертаючий момент М сили тяжіння, знак якого протилежний знаку кута відхилення маятника, а саме:

,

де L – відстань центра маси від точки підвішування. При малих кутах відхилення (рад) повертаючий момент . Цей момент надає тілу кутового прискорення: . Після відповідних підстановок матимемо рівняння фізичного ма­ятника: , де I – момент інерції тіла відносно осі коливання. Це рівняння цілком аналогічне рівнянню динаміки гармонічного осцилятора. І в цьому разі легко перевірити підстановкою, що роз­в'язок отриманого рівняння задає гармонічне коливання: з циклічною частотою і періодом коливання .

Фізичний маятник можна розглядати і як сукупність багатьох математичних маятників різної довжини. Оскільки вони жорстко зв'язані, то короткі маятники спонукають фізичний маятник до частіших коливань, а довгі – до повільніших. Для кожного фізич­ного маятника можна підібрати такий математичний маятник, який матиме однаковий період коливання з даним фізичним. Довжина такого математичного маятника, який має однаковий період з даним фізичним, називається зведеною довжиною фізичного маятника. З рівності періодів коливання цих маятників можна знайти вираз для зведеної довжини l0 фізичного маятника: . Точка на фізичному маятнику О1 що відповідає зведеній довжині, називається центром коливань. Центр коливань і точка підвішування – спряжеш точки. Якщо їх поміняти ролями, то період фізичного маятника не зміниться.

Енергія коливального руху. Щоб надати матеріальній точці коливального руху, треба вивести її з положення рівноваги. Для цього виконують певну роботу проти повертаючої сили. Ця робота буде мірою потенціальної енергії, нада­ної точці ззовні: . Із отриманого рівняння випливає, що потенціальна енергія точки в коливальному русі пропорційна квадрату її зміщення з положення рівноваги. Після припинення дії зовнішньої сили точка повертатиметься до положення рівноваги під дією квазіпружної сили. У міру зменшення зміщення, відповідно до закону збереження енергії, потенціальна енергія точки перетворюватиметься в кінетичну енергію. Оскільки зміщення точки і коефіцієнт квазіпружної сили , то потенціальну енергію точки в коливальному русі можна визначити за формулою:

.

Кінетичну енергію точки з масою m і швидкістю v запишемо так:

.

У положеннях крайнього зміщення потенціальна енергія макси­мальна, а кінетична дорівнює нулю. З рухом до положення рівноваги потенціальна енергія зменшується, а кінетична збільшується; у мо­мент рівноваги потенціальна енергія дорівнює нулю, а кінетична набуває максимального значення. Повна енергія точки в коливальному русі складається із суми потенціальної і кінетичної енергії:

,

або після спрощення: .

Отже, енергія точки в коливальному русі пропорційна квадрату амплітуди і квадрату частоти. Якщо система ізольована від інших зовнішніх впливів і точка коливається без тертя, то згідно з законом збереження енергія Е коливального руху точки залишається сталою.

 

 

<== предыдущая лекция | следующая лекция ==>
Тема: Механічні коливання. Гармонічний осцилятор. Пружній, математичний та фізичний маятники. Енергія гармонічних коливань | Рішення, які звертаються до примусового виконання
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3024; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.