Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачі до розділу 8.1

Задача 8.1.1

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться у межах .

 

Рішення

 

Ймовірність того, що випадкова величина Х прийме значення, що вміщується в інтервалі , дорівнює приросту функції розподілу на цьому інтервалі

.

 

Поклавши, що , одержуємо

 

Задача 8.1.2

 

Випадкова величина Х задана на всій осі Ох функцією розподілу . Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться в інтервалі (0, 1).

 

Задача 8.1.3

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться у межах .

 

Задача 8.1.4

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення: а) менше 0,2; б) менше 3; в) не менше 3; г) не менше 5.

Розділ 8.2. Диференціальна функція розподілу та її властивості

 

 

Нехай випадкова величина – неперервна, тоді функція розподілу F(x) теж неперервна. Нехай в околі точки х функція F(x) є диференційованою.

Означення: Диференціальною функцією розподілу f(x) називають першу похідну інтегральної функції F(x), тобто

 

. (8.5)

 

Властивість 1: Диференціальна функція є невід’ємною

 

.

 

Доведення

 

Ця властивість випливає із означення диференціальної функції як похідної від неспадної функції розподілу F(x). Геометрично це означає, що графік диференціальної функції розміщений або над віссю абсцис, або збігається з нею. Графік диференціальної функції називається кривою розподілу.

 

Властивість 2: Ймовірність того, що неперервна випадкова величина прийме значення з інтервалу дорівнює визначеному інтегралу від диференціальної функції, взятому в межах від а до b, тобто

 

(8.6)

 

 

Із наслідку 2 розділу 8.1 маємо

 

 

Якщо покласти у формулі (8.6) і застосувати теорему про середнє значення у визначному інтегралі, то її можна представити

 

 

Розділивши обидві частини в останній рівності на , отримаємо

 

 

Останнє відношення є середньою щільністю розподілу ймовірностей на проміжку . Якщо перейти до границі при то отримаємо

 

. (8.7)

 

Формула (8.7) задає диференціальну функцію розподілу як щільність розподілу ймовірності неперервної випадкової величини в даній точці. У зв’язку з цим функцію f(x) називають диференціальною функцієюрозподілу або щільністю розподілу.

Приклад:

Дана диференціальна функція випадкової величини. Знайти ймовірність того, що за результатом випробування випадкова величина прийме значення з інтервалу (0,3; 1), якщо диференціальна функція дорівнює

 

Рішення

 

За формулою (8.6)

 

Властивість 3: Інтегральна функція розподілу може бути виражена через диференціальну

(8.8)

 

Доведення

 

 

Покладемо у формулі (8.8) маємо

 

Приклад:

Знайти інтегральну функцію за даною диференціальною функцією

 

Рішення

 

Якщо , тоді f(x)=0 F(x)=0. Якщо , тоді

 

Якщо ж , тоді

 

Властивість 4: Інтеграл у нескінченних межах від диференціальної функції дорівнює одиниці

(8.9)

 

Доведення

 

Цей вираз є ймовірністю події, яка полягає у тому, що випадкова величина прийме значення, яке належить , тобто є ймовірністю достовірної події, а ймовірність достовірної події дорівнює одиниці.

Геометрично це означає, що вся площа, обмежена віссю абсцис і кривою щільності розподілу, дорівнює одиниці. У цьому є аналогія щільності розподілу гістограми питомих відносних частот для статистичного ряду.

 

Приклад:

Диференціальна функція розподілу випадкової величини задана рівністю , знайти параметр а.

 

Рішення

 

За формулою (8.9) одержуємо

 

тому що

 

 

 

<== предыдущая лекция | следующая лекция ==>
Задачі до розділу 7.2 | Задачі до розділу 8.2
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 242; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.067 сек.