Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выпрямители на полностью управляемых вентилях




Лекция 2

 

 

Целью данного раздела является изучение выпрямителей, выполненных на полностью управляемых вентилях (запираемых тиристорах, транзисторах).

Рассмотренные управляемые выпрямители на вентилях с неполным управлением характеризовались тем, что при включении очередного вентиля к проводящему ток нагрузки вентилю прикладывается обратное напряжение и он выключается (запирается) естественным образом. Поэтому такая коммутация тока с вентиля на вентиль получила название естественной коммутации. Но задержка включения вентилей относительно точек естественного зажигания на угол α приводит к потреблению выпрямителем из питающей сети реактивной мощности и снижению его входного коэффициента мощности с ростом угла α.

Коммутация токов в вентилях в схемах выпрямления на вентилях с полным управлением, способных включаться и выключаться воздействием по цепи управления при наличии на вентиле прямого напряжения, называется принудительной коммутацией. (Раньше вентилям с неполным управлением искусственно придавались свойства вентилей с полным управлением за счет специального схемотехнического решения –узла искусственной коммутации. Такая коммутация называется искусственной коммутацией [12, 17, 19].) Принудительная коммутация придает возможность регулировать выпрямленное напряжение

другими способами, которым не присуща указанная особенность от­стающего фазового регулирования. Здесь будут рассмотрены три та­ких способа:

. опережающее фазовое регулирование;

. широтно-импульсное регулирование выпрямленного напряжения;. принудительное формирование кривой первичного тока выпря­мителя.

ВЫПРЯМИТЕЛЬ С ПРИНУДИТЕЛЬНЫМ ФОРМИРОВАНИЕМ

КРИВОЙ ТОКА, ПОТРЕБЛЯЕМОГО ИЗ ПИТАЮЩЕЙ СЕТИ

 

Во всех ранее рассмотренных схемах выпрямления коммутация тока в вентилях сопровождалась коммутацией токов в фазах питающей сети. В выпрямителях на вентилях с неполным управлением обе коммутации осуществлялись параллельно, в выпрямителях на вентилях с полным управлением, рассматриваемых в этом разделе, сначала осуществлялась коммутация тока в вентилях, а затем – токов в фазах. В обоих случаях это приводило к импульсному характеру токов в фазах входного трансформатора и в сети, т. е. к сниженному качеству тока по сравнению с токами линейных потребителей электрической энергии.

Можно существенно «выправить» нелинейность вентильного преобразователя по входу, если дать вентильному преобразователю возможность формировать кривую его входного тока. Для этого, очевидно, во-первых, необходимо, чтобы преобразователь был выполнен на полностью управляемых вентилях и, во-вторых, после выключения вентилей оставался путь для продолжения протекания тока фазы через другой, дополнительный вентиль. Однофазная полумостовая схема такого преобразователя на запираемых тиристорах показана на рис. 3.11.4.

C2
ud
C1

Здесь дополнительными вентилями являются диоды Д1, Д2. Второе плечо моста образовано конденсаторами С 1, С 2, с которых одновременно как с выходного емкостного фильтра выпрямителя снимается постоянное напряжение Ud. Входной реактор с индуктивностью L ф, роль которой может выполнить и индуктивность рассеивания входного трансформатора при его наличии, предназначен для сглаживания пульсаций, обусловленных коммутациями вентилей, в непрерывной (без токовых пауз) кривой входного тока.

Можно промодулировать методом широтно-импульсной модуляции (ШИМ) длительность проводящего состояния запираемых тиристоров, коммутируемых с повышенной частотой, по синусоидальному закону с частотой, равной частоте напряжения питающей сети. Тогда, при условии постоянства напряжения Ud на выходе моста, на входе моста образуется широтно-модулированная последовательность двухполярных импульсов u.

Положительный импульс напряжения u создается при включенном состоянии запираемого тиристора ЗТ2 или диода Д2 (в зависимости от

направления тока через это плечо моста), а отрицательный импульс напряжения u – при включенном состоянии запираемого тиристора ЗТ1 или диода Д1. Под действием разности напряжения сети u 1 и сформированного соответствующим управлением напряжения u будет протекать непрерывно ток i 1 с пульсациями, ограничиваемый величиной индуктивности L ф. При определенных соотношениях между этими напряжениями фаза первой гармоники этого тока, как видно из векторной диаграммы на рис. 3.11.5, может равняться нулю.

При достаточном превышении (в десять раз и более) частоты коммутации тиристоров над частотой напряжения сети пульсации тока могут стать малы, т. е.

 

входной ток выпрямителя будет практически синусоидальным.

Схема подобного выпрямителя с питанием от трехфазной сети образуется из трех аналогичных вентильных плеч, как показано на рис. 3.11.6. При этом потребность в емкостном делителе напряжения, имеющемся в однофазной схеме, здесь уже отпадает.


 

Как видно из векторной диаграммы рис. 3.11.5, при отрицательном знаке угла ψ и той же величине напряжения на входе вентильного комплекта u, ток в цепи переменного тока преобразователя будет в противофазе с напряжением. Это будет означать переход вентильного преобразователя с ШИМ в инверторный режим, так как активная мощность в цепи переменного тока теперь отдается в сеть переменного напряжения. Уменьшением угла управления ψ до нуля можно свести до нуля и активную мощность как в выпрямительном, так и в инверторном режимах. При этом напряжение в звене постоянного тока сохраняет знак и меняется в ограниченных пределах, что отличает выпрямительноинверторные режимы в таком преобразователе с ШИМ от выпрямительно-инверторных режимов в преобразователе на вентилях с неполным управлением и фазовым способом регулирования (см. раздел 3.4).

Основные характеристики такого выпрямителя будут получены в разделе пособия (часть 2), посвященном автономным инверторам, где этот выпрямитель рассматривается как обращенный инвертор напряжения.

Если нет требования к необходимости рекуперации энергии из цепи постоянного тока выпрямителя, т. е. к необходимости обеспечения возможности инверторного режима, то схема выпрямителя с принудительным формированием входного тока упрощается и для однофазной сети приобретает вид, показанный на рис. 3.11.7, а, а ее временные диаграммы представлены на рис. 3.11.7, б.

Схема содержит однофазную мостовую схему неуправляемого выпрямителя, накопительный реактор Ld, транзистор (вентиль с полным управлением), накопительный конденсатор С с разделительным диодом D. Эта часть схемы после диодного выпрямителя являет, как будет показано во второй части пособия, разновидность повышающего преобразователя постоянного напряжения в постоянное. На качественном уровне его режим работы такой. При проводящем состоянии транзистора все выпрямленное напряжение диодного моста прикладывается к накопительному дросселю, при этом ток в нем нарастает (интервал импульса управления U упр на рис. 3.11.7, б). При выключении транзистора ток накопительного дросселя через разделительный диод D заряжает накопительный конденсатор С и питает цепь нагрузки. Модулируя соответствующим образом длительность проводящего состояния транзистора с частотой, во много раз превышающей частоту питающего напряжения, можно сформировать практически синусоидальные полуволны тока в накопительном дросселе Ld, синфазные с выпрямленным напряжением. Выпрямленный ток в такой однофазной схеме



(при проводимости диодов выпрямителя по полпериода сети коммутационная функция моста Ψп – прямоугольное колебание) есть модуль входного тока по (1.4.2). Тогда получается практически синусоидальный ток на входе выпрямителя, находящийся в фазе с напряжением сети. При этом выходное напряжение преобразователя Ud должно быть больше амплитуды выпрямленного напряжения на выходе диодного моста. Это необходимо для обеспечения управления спадом тока накопительного реактора Ld на интервале выключения транзистора, когда к реактору прикладывается разность указанных напряжений в направлении, обратном, чем на интервале нарастания тока.

Формально данный составной преобразователь образован каскадным включением двух простых указанных вентильных преобразователей и должен бы быть рассмотрен по нашей методике в третьей части пособия, посвященной составным преобразователям. Но широкое распространение этой схемы выпрямления, прежде всего для целей питания стабилизированным напряжением маломощных нагрузок (устройства управления, теле-, радио- и бытовая аппаратура), оправдывает ее качественное рассмотрение здесь и сейчас. На Западе эта схема получила название корректора коэффициента мощности за свое свойство обеспечивать входной коэффициент мощности практически равным единице. Да и родилась она в результате упрощения рассмотренных выше схем однокаскадных выпрямителей с принудительным формированием входного тока, обладающих способностью к рекуперации энергии из нагрузки [20]. Снятие этого требования позволило перенести функцию принудительного формирования кривой тока из цепи переменного тока, как в схемах рис. 3.11.4 и 3.11.6, в цепь постоянного тока, как в схеме рис. 3.11.7. Схема с двухкаскадным преобразованием и всего одним управляемым вентилем оказалась дешевле схемы с однокаскадным преобразованием, но с двумя управляемыми вентилями.

Таким образом, выпрямители на вентилях с полным управлением (запираемых тиристорах, силовых транзисторах) позволяют улучшить входные энергетические характеристики такого выпрямителя по сравнению со случаем выполнения его на не полностью управляемых вентилях (тиристорах). Новые схемные решения делают значительный шаг на пути к построению выпрямителя – идеала с полной электромагнитной совместимостью с питающей сетью, т. е. с регулируемым в полном диапазоне постоянным напряжением на выходе и синусоидальным током на входе, синфазным с напряжением сети.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1158; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.