Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 17. Гидролиз солей. Степень и константа гидролиза

Интервал перехода и изменение окраски индикаторов

 

Индикатор Изменение окраски Интервал рН
Метиловый оранжевый Бромкрезоловый зелёный Бромкрезоловый перпурный Бромтимоловый синий Крезоловый красный Фенолфталеин Ализариновый жёлтый Красный – жёлтый Желтый – голубой Желтый – пурпурный Желтый – голубой Желтый – красный Бесцветный – красный Желтый – лиловый 3,1 – 4,4 3,8 – 5,4 5,2 – 6,8 6,0 – 7,6 7,2 – 8,8 8,3 – 10,0 10,0 – 12,0

 

1. Типы гидролиза солей.

2. Факторы, влияющие на процесс гидролиза.

 

1. Типы гидролиза солей

Гидролизом называют реакции взаимодействия веществ с водой, приводящие к образованию слабодиссоциирующих веществ: слабых кислот или оснований, кислых или основных солей. Результат гид­ролиза можно расценивать как нарушение равновесия диссоциации H2O. Рассмотрим процессы при растворении солей в воде. Соли, как правило, – сильные электролиты, поэтому происходит их полная диссоциация на ионы, которые, в свою очередь, могут взаимодейст­вовать с ионами Н+ или ОН- воды.

Следовательно, гидролиз солей протекает засчет взаимодейст­вия ионов соли с водой. Этот процесс–частный случай реакций ионного обмена, когда в качестве реагента выступает вода.

В зависимости от катионов и анионов соли можно разбить на ряд групп, различающихся между собой по характеру образующих эти соли кислот и оснований:

I. Соли слабой одноосновной кислоты и сильного однокислотного основания. Например, растворяется ацетат калия. Являясь сильным электролитом, он полностью диссоциирует на ионы, но вода также частично диссоциирует. Возможно возникновение сле­дующего процесса:

CH3COOK K+ + CH3COO-

+

H2O OH- + H+

CH3COOH

Так как уксусная кислота – слабый электролит, то при столкно­вении ее кислотных остатков с ионами Н+ воды, образуются недиссоциированные молекулы уксусной кислоты. Удаление из раствора части ионов Н+ вызывает сдвиг равновесия процесса диссоциации воды слева направо. Содержание ионов ОН- в растворе нарастает. Раствор приобретает щелочную реакцию. В ионном виде процесс изображается уравнением:

СН3СОО- + Н2О СН3СООН + ОН-

В момент достижения равновесия применение закона действия масс приводит к выражению:

,

[H2O] в разбавленных растворах – величина постоянная, поэтому произведение К [H2O] – тоже константа. Ее называют константой гидролиза Кгидр:

Константу гидролиза можно выразить через ионное произведение воды и константу диссоциации кислоты. Для этого умножим числитель и знаменатель на [H+] и запишем:

В результате гидролиза число образующихся молекул слабой ки­слоты равно числу оставшихся от молекул воды несвязанных ио­нов [ОН-]:

[ СН3СООН ] = [ ОН -]

Концентрация ионов соли практически равна концентрации этой соли, так как сильные электролиты диссоциируют полностью:

[ CH3COO -] =

где – концентрация соли в растворе.

Подставляем для Кгидр:

откуда

[ OH -] = (Kгид р)1/2

Концентрация ионов гидроксила в растворе соли слабой одно­основной кислоты и сильного однокислотного основания равна квадратному корню из произведения константы гидролиза соли на ее концентрацию. Так как

, то [OH-] = ()1/2

В тех случаях, когда константа диссоциации кислоты очень мала, нельзя пренебрегать в расчете частью ее анионов, связавшейся в недиссоциированные молекулы. В этом случае расчет ведут по более точному выражению

,

откуда

[OH-] = .

II. Соли сильной одноосновной кислоты и слабого однокислотно­го основания. Примером такой соли является хлорид аммония. Он сильный электролит и диссоциирует полностью

NH4Cl → NH4+ + Cl-

Вода также частично диссоциирует:

H2O H+ + OH-

Столкновение ионов NH4+ с ионами ОН- приводит к образованию соединения NH4ОH, легко превращающееся в аммиак и воду.Об­щую схему процесса можно представить уравнением:

NH4Cl → NH4+ + Cl-

+

H2O OH- + H+

 

NH4OH NH3 + H2O

или в ионной форме

NH4+ + H2O [NH4OH] + H+

Связывание ионов ОН- из раствора вызывает сдвиг диссоциации воды слева направо. Концентрация ионов Н+ в растворе растет. Таким образом, гидролиз солей слабых однокислотных оснований и сильных одноосновных кислот создает кислую среду.

Рассуждая аналогично I случаю, получим:

.

Подставим вместо [NH4ОH] равную ей концентрацию ионов [Н+], а вместо [NH4+] приближенно равную ей концентрацию соли Ссоль.

Получим:

Если образующееся при гидролизе основание очень слабое, то расчет ведут по более точной формуле

.

III. Соли слабой одноосновной кислоты и слабого однокислотно­го основания. При растворении ацетата аммония в воде наступает его практически полная диссоциация:

CH3COONH4 → NH4+ + CH3COO-

Столкновение ионов NH4+ и СН3СОО- с молекулами воды приво­дит к образованию слабо диссоциирующих молекул соответственно слабого основания NH4ОH и слабой кислоты СН3СООН по схеме:

CH3COOH → NH4+ + CH3COO-

+ +

H2O OH- + H+

 

NH4OH + CH3COOH

Так как образующиеся вещества – слабые электролиты, то в результате соли слабых кислот и слабых оснований подвергаются почти полному гидролизу, а реакция среды в растворах определя­ется соотношением силы кислоты и основания. В ионной форме уравнение гидролиза соли может быть представлено уравнением:

CH3COO- + NH4+ + H2O NH4OH + CH3COOH

Применим к нему закон действия масс для момента равновесия

Это выражение можно упростить. Умножим числитель и знамена­тель на ионное произведение воды

.

Константы диссоциации основания и кислоты выражаются со­ответственно:

;

откуда следуют выражения для [NH4+] и [СНзСОО-]

, .

Чтобы получить формулу для расчета [Н+], проведем ряд последо­вательных преобразований. Из уравнения:

[ NH4 +] = [ CH3COO -]; [ CH3COOH ] = [ NH4OH ]

Вместо [NH4ОH] подставим равную ей [СН3СООН], полу­чим

Затем в константу диссоциации кислоты

введем вместо [СН3СОО-] равную ей [NН4+], получим:

Умножаем числитель и знаменатель соотношения на [Н+] и после сокращения [СН3СООН] и преобразований получим:

[H+] =

Из формулы видно, что концентрация ионов водорода в растворе соли слабой кислоты и слабого основания не зависит от концентра­ции раствора соли, а только от соотношения констант диссоциации кислоты и основания.

IV. Соль сильного основания и сильной кислоты. Такая сольв растворе диссоциирует полностью, например хлорид калия KCl → K+ + Cl-

В отличие от рассмотренных выше случаев ионы соли – сильного электролита – не могут образовать с водой слабых электролитов, а раз нет взаимодействия с водой, то, следовательно, соли сильных кислот и сильных оснований гидролизу не подвергаются. Среда в растворе остается нейтральной.

2. Факторы, влияющие на процесс гидролиза

Соль слабого многокислотного основания и сильной однооснов­ной кислоты. Например раствор FeCI3 содержит только ионы, так как эта соль в растворе диссоциирует полностью:

FeCl3 → Fe3+ + 3Cl-

Катион соли представляет собой катион слабого основания, поэто­му его столкновение с гидроксильными ионами воды приводит к образованию слабого электролита. Так как вода диссоциирует крайне незначительно, то столкновение ионов Fe3+ с тремя ионами ОН-невероятно, образование Fе(ОН)3 в результате гидролиза при обычных условиях невозможно. Очевидно, процесс взаимодействия ионов соли с молекулами воды должен протекать по стадиям

FeCl3 → Fe3+ + 3Cl-

+

H2O OH- + H+


(FeOH)2+ + H+ + 3Cl- (I стадия)

Образовавшийся ион (FeOH)2+ может столкнуться еще с одним ионом ОН-

(FeOH)2+ + H+ + 3Cl-

+

H2O OH- + H+

 

[Fe(OH)2]+ + 2H+ + 3Cl- (II стадия)

Возможность для осуществления различных этапов гидролиза не одинакова. Процессу гидролитического взаимодействия по I ста­дии ничто не препятствует, поэтому он протекает легко: Кр= 8,9 ∙ 10-4, и в растворе накапливаются ионы Н+. Процесс элек­тролитической диссоциации воды сдвигается справа налево. Кон­центрация ионов ОН- понижается. Вероятность столкновения ионов (FeOH)2+ с ионами ОН- в растворе становится незначительной, процесс по II стадии идет гораздо в меньшей степени: Кр =4,9 ∙ 10-7. В итоге II стадии величина ОН- становится еще меньше, и третий этап гидролиза становится еще менее вероятным. Практически он самопроизвольно не осуществляется

[Fe(OH)2]+ + 2H+ + 3Cl-

+

H2O OH- + H+

Fe(OH)3 + 3H+ + 3Cl- (III стадия)

Из уравнений всех трех этапов процесса видно, что ионы С1- участия в реакции не принимают, поэтому влияния на процесс гидролиза не оказывают.

Гидролиз соли многокислотного основания и одноосновной кис­лоты имеет свои особенности. Процесс протекает по ступеням. При температуре, близкой к комнатной, гидролиз осуществляется прак­тически только по I стадии вследствие накопления в растворе ионов Н+. Соли слабых многоосновных оснований и сильных кислот со­здают в растворе кислую среду.

Соли слабых многоосновных кислот и сильных оснований. Рас­суждая аналогично предыдущему случаю, можно записать для раствора К2СО3:

K2CO3 → 2K+ + CO32-

+

H2O OH- + H+

 

HCO3- (Iстадия)

В результате I стадии гидролиза в растворе накапливаются ионы ОН-, подавляющие процесс диссоциации воды. Поэтому при нор­мальных условиях II стадия гидролиза становится мало вероятной:

 

+ + ОН- + НСО3-

+

H2O OH- + H+

+ + 2ОН- + Н2СО3 (IIстадия)

Таким образом, гидролиз солей слабых многоосновных кислот и сильных оснований протекает по стадиям и обычно заканчивается на первой. Раствор соли слабой многоосновной кислоты и сильного основания характеризуется щелочной средой.

Соли слабой многоосновной кислоты и слабого миогокислотного основания. Рассуждаем аналогично предыдущим случаям. Для раствора А12(СО3)3 можно записать:

Al2(CO3)3 → 2Al3+ + CO32-

+ +

H2O OH- + H+ (I стадия)


AlOH2+ + HCO3- + Al3+ + 2CO32-

Вторым этапом процесса будет связывание второго иона Al3+ в ион основной соли и еще одного иона СО32- в НСО3-. На I ста­дии процесса не происходит заметного накопления в растворе ионов ОН- и Н+. Поэтому II стадия гидролиза протекает беспрепятствен­но и оба процесса можно представить суммарным уравнением:

Al2(CO3)3 → 2Al3+ + CO32-

+ +

2 H2O 2OH- + 2H+ (I и IIстадии)

 
 

2 AlOH2+ + 2HCO3- + CO32-

И в результате II стадии не возникает заметного сдвига концен­траций Н+ или ОН- в растворе, поэтому процесс диссоциации воды протекает беспрепятственно и обусловливает возможность течения следующих этапов гидролиза

2 AlOH2+ + 2HCO3- + CO32-

+ +

2 H2O 2OH- + 2H+ (III и IV стадии)

 
 

2 [Al(OH)2]+ + H2CO3 + 2HCO3-

В результате этих стадий не возникло заметного изменения кон­центраций Н+ или ОН- в растворе, поэтому возможно продолжение гидролиза

 

2 [Al(OH)2]+ + H2CO3 + 2HCO3-

+ +

 
 

2 H2O 2OH- + 2H+ (V и VI стадии)

2 Al(OH)3 + 3H2CO3

Таким образом, гидролиз солей слабых многоосновных кислот и слабых многокислотных оснований протекает сильнее, чем бинар­ных солей. В результате гидролиза могут образоваться продукты полного гидролиза соли. Стадия, до которой протекает гидролиз соли, определяется соотношением силы основания и кислоты.

Для характеристики гидролиза различных солей вводятся две величины. Константа гидролиза Кгидр равна в момент динамического равновесия отношению произведения концентраций продуктов гидролиза к произведению концентраций гидролизующихся ионов соли. Степень гидролиза αгидр – отношение числа гидролизованных молекул соли к числу растворенных

Константы гидролиза соли растут по мере уменьшения констант диссоциации кислот и оснований, образующихся в результате процесса. Следовательно, возрастает и количество гидролизованных молекул. Степень гидролиза соли возрастает по мере уменьшения констант диссоциации кислот и оснований, образующихся в резуль­тате процесса.

Пример 1. К раствору FeCl3 добавляют раствор К2СО3. Определить полноту гидролиза.

Решение. Процесс гидролиза раствора FеС13 в сокращенной ионной форме изображается уравнением

Fe3+ + H2O FeOH2+ + H+

Последующие стадии процесса не идут.

В растворе К2СО3 гидролиз протекает по схеме

CO32- + H2O HCO3- + OH-

Таким образом, в результате гидролиза в растворах образуются в избытке противоположные по знаку ионы воды (Н+ и ОН-). При смешивании растворов FeCl3 и K2CO3 наступает взаимная нейтрализация ионов Н+ и ОН-. Затруднения для гидролиза по последующим стадиям исчезают, и гидролиз солей слабого основания и сильной кислоты в смеси с солью сильного основания и слабой кислоты идет до конца:

FeOH2+ + H2O Fe(OH)2+ + H+

Fe(OH)2 + H2O Fe(OH)3+ + H+

HCO3- + H2O H2CO3 + OH-

Образование осадка Fе(ОН)3 в результате полного гидролиза FеС13 и непроч­ной кислоты Н2СО3 облегчает течение процесса. Следовательно, добавление к раствору гидролизующейся соли другой соли, при гидролизе которой создается иная кислотность, усиливает процесс гидролиза.

Разбавление раствора увеличивает вероятность столкновения ионов растворенного вещества с ионами воды, вследствие этого степень гидролиза растет. Константа гидролизаот разбавления раствора не зависит.

При нагревании раствора увеличивается энергия теплового дви­жения и вероятность столкновения ионов соли с ионами воды. Кон­станта диссоциации воды и ее ионное произведение, а, следователь­но, степень гидролиза и константа гидролиза растут. Так, процесс гидролиза раствора хлорида железа, протекающий при нормаль­ной температуре до I стадии, при нагревании может проходить по II и даже по III. Это обусловлено увеличением количества ионов FeOH2+, образующихся в результате гидролиза FeCl3 и ростом концентрации ионов ОН- в растворе, вследствие увеличения ионно­го произведения воды. Процессы гидролиза могут быть усилены или подавлены добавлением соединений, содержащих ионы гидроксила или водорода или веществ, подвергающихся гидролизу.

Пример 2. К раствору FеС13 добавляют NH4C1. Определить изменение про­цесса гидролиза.

Решение. Процесс гидролиза FeCl3 запишется так:

Fe3+ + H2O FeOH2+ + H+

При растворении NH4Cl осуществляется реакция

NH4+ + H2O NH4OH + H+

Прибавление хлорида аммония к раствору FeCl3 повышает концентрацию ионов Н+ в растворе. Равновесие смещается влево и гидролиз обеих солей снижается. Таким образом, добавление в раствор гидролизующейся соли другой соли, гидро­лиз которой сопровождается образованием ионов воды, аналогичных возникаю­щим при гидролизе первой, подавляет гидролиз.

 

<== предыдущая лекция | следующая лекция ==>
Лекция 16. Диссоциация электролитов | Лекция 18. Реакции с переносом электронов или окислительно-восстановительные реакции
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2862; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.069 сек.