Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Старая парадигма ® нормальная стадия развития науки ® революция в науке ® новая парадигма

Парадигмальная концепция развития научного знания затем была конкретизирована с помощью понятия «исследовательской программы» как структурной единицы более высокого порядка, чем отдельная теория. В рамках исследовательской программы и обсуж­дается вопрос об истинности научных теорий.

Естест­веннонаучная картина мира рассматривается как еще более высокая структурная единица, которая объединяет в себе наиболее су­щественные естественнонаучные представления эпохи.

Современная научная картина мира включает в себя важнейшие дости­жения науки, создающие определенное понимание мира и места человека в нем. В нее не входят более частные сведения о свойствах различных природных систем, о деталях самого по­знавательного процесса. При этом научная картина мира не является совокупностью общих знаний, она представляет це­лостную систему представлении об общих свойствах, сферах, уровнях и закономерностях природы. Научная картина мира в от­личие от строгих теорий обладает необходимой наглядностью, характеризуется сочетанием абстрактно-теоретических знаний и образов, создаваемых с помощью моделей.

Т.о., научная картина мираэто особая форма систематизации знаний об общих свойствах, сферах, уровнях и закономерностях природы, пре­имущественно качественное обобщение и мировоззренческо-методологический синтез различных научных теорий.

В основе современной научной картины мира, отражающей фундаментальные закономерности существования и развития Природы, лежат принципы системности, глобального эволюционизма, самоорганизации и историчности.

Системность означает воспроизведение наукой того факта, что Вселенная предстает как наиболее крупная из известных нам систем, состоящая из огромно­го множества элементов (подсистем) разного уровня сложности и упорядоченно­сти.

Под системой обычно понимают некое упорядоченное множество взаимо­связанных элементов. Эффект системности обнаруживается в появлении у цело­стной системы новых свойств, возникающих в результате взаимодействия эле­ментов (атомы водорода и кислорода, например, объединенные в молекулу воды, радикально меняют свои обычные свойства).

Другой важной характеристикой системной организации является иерархичность, субординация — последователь­ное включение систем нижних уровней в системы более высоких уровней.

Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархичному включению систем разных уровней друг в друга каждый элемент любой системы оказывается связан со всеми элементами всех возможных систем. (Например, человек — биосфера — планета Земля -Солнечная система — Галактика и т. д.) Именно такой принципиально единый характер демонстрирует нам окружающий мир. Подобным образом организуются и научная картина мира, и создающее ее естествознание. Все его части ныне тес­нейшим образом взаимосвязаны — сейчас уже нет практически ни одной «чис­той» науки. Все пронизано и преобразовано физикой и химией.

Глобальный эволюционизм — это признание невозможности существова­ния Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной, кроме того, свидетельствует о принципиальном единстве мира, каждая составная часть которого есть истори­ческое следствие глобального эволюционного процесса, начатого Большим взры­вом.

Самоорганизация — наблюдаемая способность материи к самоусложне­нию и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.

Эти принципиальные особенности современной естественно-научной картины мира и определяют в главном ее общий контур, а сам способ орга­низации разнообразного научного знания в нечто целое и последовательное.

Историчность - еще одна особенность современной научной картины мира, от­личающая ее от прежних вариантов. Современная научная картина мира порождена как предше­ствующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностных ориентации, осознание важности исследования уникальных природных систем, в которые со­ставной частью включен и человек, меняют стратегию научного поиска, само от ношение человека к миру.

Но ведь развивается и Вселенная. Конечно, развитие общества и Вселенной осуществляется в разных темпоритмах. Однако их взаимное наложение делает идею создания окончательной, завершенной, абсолютно истинной научной кар­тины мири практически неосуществимой.

В современной естест­веннонаучной картине мира (эволюционной) имеет место саморазвитие. В этой кар­тине присутствует человек и его мысль. Она эволюционна и необра­тима. В ней естественнонаучное знание неразрывно связано с гуманитарным.

2. Макромир: концепции классического естествознания

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI—XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.

Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его час­тей. Исходными началами в атомизме выступали атомы и пус­тота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяже­ния и отталкивания.

Атомизм, основу которого представляла проблема материи:

  • упоминается в учении о частицах, созданном Анаксагором в V в. до н. э.;
  • нашел свое отражение в трудах видных представителей атомизма древности Демокрита и Левкиппа. Из вихря атомов, по Демокриту, образуются как отдельные тела, так и бесчисленные миры;

· последователями этих учений были Эпикур и Лукреций. Древнегреческий поэт и философ Лукреций, популяризатор учения Эпикура, создал дидактическую поэму «О природе вещей» - единственное полностью сохранившееся систематическое изложение материалистической философии древности. Философия Эпикура явилась высшим этапом развития атомистического материализма и завершением материалистических воззрений древнегреческой философии.

 

Общая тенденция атомистики выражалась в стремлении свести все многообразие свойств материальных объектов к ограниченному числу исходных объективных свойств закономерностей элементарных материальных частиц. Основополагающими признаками атомистики явились:

ü неизменность атомов (т.е. несотворимость и неуничтожимость материи);

ü противопоставление атомов пустому пространству (признание объективности пространства и движения).

 

Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мирамеханистиче­ской.

Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы — научно-теорети­ческого. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования.

Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука».[1] Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде «Пробирные весы», оказала решающее влияние на становление классического естествознания.

Позднее И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система. В основе изучения природы лежали основные законы механики сформулированные Ньютоном:

I Закон Ньютона (закон инерции): всякое тело продолжает оставаться в состоянии покоя или равномерного прямолинейного движения до тех пор, пока воздействие внешних сил не изменит его.

II Закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела): a= F/m ускорение = сила/масса.

III Закон Ньютона: Всякому действию есть равное и противоположно направленное противодействие (или всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки (тела), всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

И. Ньютон в 1672—1676гг. распространил атомистику на световые явления и создал корпускулярную теорию света. Свет он считал потоком корпускул (частиц), однако на разных этапах рассматривал и возможность существования волновых свойств света, в частности, в 1675 г. предпринял попытку создать компромиссную корпускулярно-волновую природу света. По своему мировоззрению И. Ньютон был вторым после Р. Декарта великим представителем механистического материализма в естествознании XVII—XVIII вв. Декарт стремился построить общую картину природы, в которой все явления природы объяснялись как результат движения больших и малых частиц, образованных из единой материи.

Недостатки механистической атомистики:

ü отсутствие достоверного экспериментального материала;

ü не являлась достаточно обоснованной естественно-научной теорией;

ü атомы рассматривались как частицы, лишенные возможности превращения;

ü единственной формой движения принималось механическое движение;

ü стремилась все явления природы рассматриватькак модификацию механического движения.

 

Таким образом, в XVI веке сформировалась механистическая картина мира, в рамках которой, сложилась дискретная (кор­пускулярная) модель реальности. Материя стала рассматриваться как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно све­сти к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых, физика достигла огромных успехов.

Механистические взгляды на материальный мир господствовали в естествознании не только в XVII и XVIII вв., но и почти весь XIX век. В целом природа понималась как гигантская механическая система, функционирующая по законам классической механики. Ученые-естествоиспытатели видели в классической механике прочную и окончательную основу естествознания. Многие из них вслед за Ньютоном пытались объяснить, и сходя из начал механики, самые различные явления природы. При этом они неправомерно экстраполировали законы, установленные лишь для механической сферы явлений, на все процессы окружающего мира.

Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Среди попыток объяснить оптические явления можно выделить два направления:

1) разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц — кор­пускул. В корпускулярной теории света И. Ньютона утвер­ждалось, что светящиеся тела излучают мельчайшие части­цы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отра­жения и преломления света.

2) осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно на основе волновой теории, сформули­рованной X. Гюйгенсом. Волновая теория устанавливала анало­гию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, — светоносного эфира. Распространение света рассматривалось как распространение колебаний эфира: каждая отдельная точка эфира колеблется в вертикальном направлении, а колебания всех точек создают «картину волны», которая перемещается в пространстве от одного момента времени к другому. Главным аргументом в пользу своей теории X. Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, рас­пространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гра­нью, то его тень будет иметь резкую границу. Однако это воз­ражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно ви­деть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света. Именно открытие дифракции сделало X. Гюйгенса ревностным сторонником волновой теории света. Однако авторитет И. Ньютона был настолько высок, что кор­пускулярная теория воспринималась безоговорочно даже несмотря на то, что на ее основе нельзя было объяснить явление дифракции.

Волновая теория света была вновь выдвинута в первые де­сятилетия XIX в. английским физиком Т. Юнгом и французским естествоиспытателем О.Ж. Френелем. Т.Юнг дал объясне­ние явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помо­щью парадоксального утверждения: свет, добавленный к, свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волно­вое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается со впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.

 

Явления интерференции и дифракции могли быть объяснены только в рамках волновой теории и не поддавались объяснению на основе механической корпускулярной теории света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений.

Механистическая картина мира знала только один вид материи – вещество, состоящее из частиц, имеющих массу. В XIX веке к числу свойств частиц стали прибавлять электрический заряд. И хотя масса, как считалось, была у всех частиц, а заряд – только у некоторых, обладание электрическим зарядом было признано таким же фундаментальным, важнейшим их свойством, как и масса.

Датский естествоис­пытатель Х.К. Эрстед открыл явление электромагнетизма, впервые заметив магнитное действие электрических токов.

Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Ему удалось показать опытным путем, что между магнетизмом и электричеством существует прямая динамическая связь. Он ввел в науку понятие силовых линий и электромагнитного поля. Таким образом, Фарадей впервые объединил электричество и магнетизм, признав их одной и той же силой природы. В результате в естествознании начало утверждаться понимание того, что кроме вещества, в природе существует еще и поле.

Его рабо­ты стали исходным пунктом исследований Дж.К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высоко­развитые математические методы, Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж.К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: " Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, нахо­дящиеся в электрическом или магнитном состоянии ".[2] Обоб­щив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера, Био-Савара) и открытое М. Фарадеем явление электромагнитной индукции, Максвелл математическим путем нашел систему диффе­ренциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию - теорию электромагнитного поля, как и система ньютоновской механики. («Трактат об электричестве и магнетизме» издан в 1873 г.).

Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцом в 1888 г.

В экспериментах Г. Герца в результате искровых разрядов между двумя заряженными шарами появлялись электромагнит­ные волны. Когда они падали на круговой проволочный виток, то создавали в нем токи, о появлении которых свидетельство­вали искры, проскакивающие через разрыв. Г. Герц успешно провел отражение этих волн и их интерференцию, т.е. те явле­ния, которые характерны для световых волн, а затем измерил длину электромагнитных волн. Зная частоту колебаний, он смог подсчитать скорость распространения электромагнитных волн, которая оказалась равна скорости света. Это прямо под­твердило гипотезу Максвелла.

 

После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. Перечислим их основные различия:

• Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно.

• Вещество и поле различаются по своим физическим ха­рактеристикам: частицы вещества обладают массой по­коя, а поле — нет.

• Вещество и поле различаются по степени проницаемо­сти: вещество мало проницаемо, а поле, наоборот, полностью проницаемо. Скорость распространения поля равна скорости света, а скорость движения частиц вещества меньше ее на много порядков.

 

В результате революционных открытий в физике в конце прошлого и начале нынешнего столетий обнаружилось, что физи­ческая реальность едина и нет пропасти между веществом и по­лем: поле, подобно веществу, обладает корпускулярными свой­ствами, а частицы вещества, подобно полю, — волновыми. Естествознание было вынуждено отказаться от признания особой, универсальной роли механики. Механистическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности. Было по­ложено начало электромагнитной картине мира.

Таковы основные концепции классического естествознания, распространяющиеся на макромир.

<== предыдущая лекция | следующая лекция ==>
Развитие взглядов на физическую картину мира | Микромир: концепции современной физики
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.