Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несобственные интегралы.

Геометрические приложения определенного интеграла.

1) Вычисление площадей плоских фигур.

Если .

 
 

 


Если .

 
 

 


Если .

 

 

Если .

 

Если фигура ограничена кривой, заданной параметрически, то есть

, тогда .

2) Вычисление длин друг кривых.

Пусть кривая L задана явно, то есть , , тогда длина .

Если L задана параметрически , то .

3) Вычисление объемов тел вращения.

Пусть , . Будем вращать кривую вокруг оси 0X, тогда объем тела, полученного при вращении кривой, вычисляют по формуле

.

Если же кривую , вращать вокруг оси 0Y, то

.

 

Рассмотрим . Функция определена на конечном промежуткеи ограничена на нем. Если нарушается хотя бы одно из двух требований, то мы имеем дело с несобственным интегралом.

1. Пусть нарушается требование конечности чисел a и (или) b. При этом возможны случаи:

1) пусть определена на и интегрируема на каждом конечном промежутке , где.

Несобственным интегралом первого рода называется и обозначается , то есть (1).

Если предел в правой части равенства (1) существует и конечен, то несобственный интеграл называется сходящимся и его значение равно пределу правой части. В противном случае несобственный интеграл называется расходящимся.

2) пусть определена на и интегрируема на каждом конечном промежутке ,

Несобственный интеграл первого рода в этом случае определяется по формуле (2).

3) пусть определена на и интегрируема на каждом конечном отрезке этого интервала, тогда (3), причем несобственный интеграл в левой части называется сходящимся, если сходятся оба интеграла в правой части равенства (3). Если хотя бы один из них расходится, то расходится интеграл в левой части.

Замечание. Если первообразная функции на , тогда справедлива обобщенная формула Ньютона-Лейбница , где , .

Пример.

2. Пусть нарушается требование ограниченности функции .

1) Пусть функция непрерывна на и , тогда (4).

2) Если непрерывна на и , тогда (5).

Интегралы в левой части равенств (4) и (5) называются сходящимися, если в правой части этих равенств предел существует и конечен и значение несобственного интеграла равно пределу правой части. Если в правой части равенств (4) и (5) пределы не существуют или бесконечны, то несобственные интегралы в левой части этих формул называются расходящимися.

3) Если непрерывна на и , тогда (6).

Интеграл в левой части равенства (6) называется сходящимся, если сходятся оба интеграла в правой части этой формулы; и расходящимся, если расходится хотя бы один из интегралов в правой части этой формулы.

Пример. Установить сходимость интеграла .

Так как и , то есть расходится, и потому данный интеграл расходится.

 

<== предыдущая лекция | следующая лекция ==>
Методы интегрирования определенного интеграла | Определение дифференциального уравнения. Основные понятия
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 223; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.