Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пропорциональные псевдослучайные правила

Элитарная муравьиная система

Вариации алгоритма

Вот одни из самых популярных вариаций муравьиного алгоритма:

MMAS (Max-Min муравьиная система)[11]

Добавляются граничные условия на количество феромонов (τmaxmin). Феромоны откладываются только на глобально лучших или лучших в итерации путях. Все рёбра инициализируются значением τmax

Представлена выше[12]

Ранговая муравьиная система (ASrank)

Все решения ранжируются по степени их пригодности. Количество откладываемых феромонов для каждого решения взвешено так, что более подходящие решения получают больше феромонов, чем менее подходящие.

Длительная ортогональная колония муравьёв (COAC)

Механизм отложения феромонов COAC позволяет муравьям искать решения совместно и эффективно. Используя ортогональный метод, муравьи в выполнимой области могут исследовать их выбранные области быстро и эффективно, с расширенной способностью глобального поиска и точностью.

Ортогональный метод планирования и адаптивный метод регулирования радиуса могут также быть расширены на другие алгоритмы оптимизации для получения более широких преимуществ в решении практических проблем.[13]

 

Генети́ческий алгори́тм (англ. genetic algorithm) — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как наследование, мутации, отбор и кроссинговер. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.
Описание алгоритма

Схема работы генетического алгоритма

Задача формализуется таким образом, чтобы её решение могло быть закодировано в виде вектора («генотипа») генов, где каждый ген может быть битом, числом или неким другим объектом. В классических реализациях ГА предполагается, что генотип имеет фиксированную длину. Однако существуют вариации ГА, свободные от этого ограничения.

Некоторым, обычно случайным, образом создаётся множество генотипов начальной популяции. Они оцениваются с использованием «функции приспособленности», в результате чего с каждым генотипом ассоциируется определённое значение («приспособленность»), которое определяет насколько хорошо фенотип, им описываемый, решает поставленную задачу.

При выборе «функции приспособленности» (или fitness function в англоязычной литературе) важно следить, чтобы её «рельеф» был «гладким».

Из полученного множества решений («поколения») с учётом значения «приспособленности» выбираются решения (обычно лучшие особи имеют большую вероятность быть выбранными), к которым применяются «генетические операторы» (в большинстве случаев «скрещивание» — crossover и «мутация» — mutation), результатом чего является получение новых решений. Для них также вычисляется значение приспособленности, и затем производится отбор («селекция») лучших решений в следующее поколение.

Этот набор действий повторяется итеративно, так моделируется «эволюционный процесс», продолжающийся несколько жизненных циклов (поколений), пока не будет выполнен критерий остановки алгоритма. Таким критерием может быть:

  • нахождение глобального, либо субоптимального решения;
  • исчерпание числа поколений, отпущенных на эволюцию;
  • исчерпание времени, отпущенного на эволюцию.

Генетические алгоритмы служат, главным образом, для поиска решений в многомерных пространствах поиска.

Таким образом, можно выделить следующие этапы генетического алгоритма:

  1. Задать целевую функцию (приспособленности) для особей популяции
  2. Создать начальную популяцию
  • (Начало цикла)

1. Размножение (скрещивание)

2. Мутирование

3. Вычислить значение целевой функции для всех особей

4. Формирование нового поколения (селекция)

5. Если выполняются условия остановки, то (конец цикла), иначе (начало цикла).

<== предыдущая лекция | следующая лекция ==>
Подробнее | ТЕМА№1: Предмет, методы и задачи финансово-банковской статистики
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 399; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.