Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия, архитектурные особенности ОС




1.2.1. Системные вызовы

В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС. В операционных системах наиболее известной советской вычислительной машины БЭСМ-6 соответствующие средства "общения" с ядром назывались экстракодами, в операционных системах IBM они назывались системными макрокомандами и т.д. В ОС Unix такие средства называют системными вызовами.

Системные вызовы (system calls) – это интерфейс между операционной системой и пользовательской программой. Они создают, удаляют и используют различные объекты, главные из которых – процессы и файлы. Пользовательская программа запрашивает сервис у операционной системы, осуществляя системный вызов. Имеются библиотеки процедур, которые загружают машинные регистры определенными параметрами и осуществляют прерывание процессора, после чего управление передается обработчику данного вызова, входящему в ядро операционной системы. Цель таких библиотек – сделать системный вызов похожим на обычный вызов подпрограммы.

Основное отличие состоит в том, что при системном вызове задача переходит в привилегированный режим или режим ядра (kernel mode). Поэтому системные вызовы иногда еще называют программными прерываниями, в отличие от аппаратных прерываний, которые чаще называют просто прерываниями.

В этом режиме работает код ядра операционной системы, причем исполняется он в адресном пространстве и в контексте вызвавшей его задачи. Таким образом, ядро операционной системы имеет полный доступ к памяти пользовательской программы, и при системном вызове достаточно передать адреса одной или нескольких областей памяти с параметрами вызова и адреса одной или нескольких областей памяти для результатов вызова.

В большинстве операционных систем системный вызов осуществляется командой программного прерывания (INT). Программное прерывание – это синхронное событие, которое может быть повторено при выполнении одного и того же программного кода.

1.2.2. Прерывания

Прерывание (hardware interrupt) – это событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо информирует центральный процессор о том, что произошло какое-либо событие, требующее немедленной реакции (например, пользователь нажал клавишу), либо сообщает о завершении асинхронной операции ввода-вывода (например, закончено чтение данных с диска в основную память). Важный тип аппаратных прерываний – прерывания таймера, которые генерируются периодически через фиксированный промежуток времени. Прерывания таймера используются операционной системой при планировании процессов. Каждый тип аппаратных прерываний имеет собственный номер, однозначно определяющий источник прерывания. Аппаратное прерывание – это асинхронное событие, то есть оно возникает вне зависимости от того, какой код исполняется процессором в данный момент. Обработка аппаратного прерывания не должна учитывать, какой процесс является текущим.

1.2.3. Исключительные ситуации

Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Примерами таких команд могут быть попытки доступа к ресурсу при отсутствии достаточных привилегий или обращения к отсутствующей странице памяти. Исключительные ситуации, как и системные вызовы, являются синхронными событиями, возникающими в контексте текущей задачи. Исключительные ситуации можно разделить на исправимые и неисправимые. К исправимым относятся такие исключительные ситуации, как отсутствие нужной информации в оперативной памяти. После устранения причины исправимой исключительной ситуации программа может выполняться дальше. Возникновение в процессе работы операционной системы исправимых исключительных ситуаций считается нормальным явлением. Неисправимые исключительные ситуации чаще всего возникают в результате ошибок в программах (например, деление на ноль). Обычно в таких случаях операционная система реагирует завершением программы, вызвавшей исключительную ситуацию.

1.2.4. Файлы

Файлы предназначены для хранения информации на внешних носителях, то есть принято, что информация, записанная, например, на диске, должна находиться внутри файла. Обычно под файлом понимают именованную часть пространства на носителе информации.

Главная задача файловой системы (file system) – скрыть особенности ввода-вывода и дать программисту простую абстрактную модель файлов, независимых от устройств. Для чтения, создания, удаления, записи, открытия и закрытия файлов также имеется обширная категория системных вызовов (создание, удаление, открытие, закрытие, чтение и т.д.). Пользователям хорошо знакомы такие связанные с организацией файловой системы понятия, как каталог, текущий каталог, корневой каталог, путь. Для манипулирования этими объектами в операционной системе имеются системные вызовы. Файловая система ОС рассматривается далее.

1.2.5. Процессы, нити

Концепция процесса в ОС одна из наиболее фундаментальных. Процессы подробно рассмотрены в следующих лекциях. Там же описаны нити, или легковесные процессы.

1.2.6. Монолитное ядро

По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Такая структура операционной системы называется монолитным ядром (monolithic kernel). Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро – это такая схема операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.

Во многих операционных системах с монолитным ядром сборка ядра, то есть его компиляция, осуществляется отдельно для каждого компьютера, на который устанавливается операционная система. При этом можно выбрать список оборудования и программных протоколов, поддержка которых будет включена в ядро. Так как ядро является единой программой, перекомпиляция – это единственный способ добавить в него новые компоненты или исключить неиспользуемые. Следует отметить, что присутствие в ядре лишних компонентов крайне нежелательно, так как ядро всегда полностью располагается в оперативной памяти. Кроме того, исключение ненужных компонентов повышает надежность операционной системы в целом.

Монолитное ядро – старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство Unix-систем.

Даже в монолитных системах можно выделить некоторую структуру. Как в бетонной глыбе можно различить вкрапления щебенки, так и в монолитном ядре выделяются вкрапления сервисных процедур, соответствующих системным вызовам. Сервисные процедуры выполняются в привилегированном режиме, тогда как пользовательские программы – в непривилегированном. Для перехода с одного уровня привилегий на другой иногда может использоваться главная сервисная программа, определяющая, какой именно системный вызов был сделан, корректность входных данных для этого вызова и передающая управление соответствующей сервисной процедуре с переходом в привилегированный режим работы. Иногда выделяют также набор программных утилит, которые помогают выполнять сервисные процедуры.

1.2.7. Многоуровневые системы (Layered systems)

Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне. Впервые такой подход был применен при создании системы THE (Technishe Hogeschool Eindhoven) Дейкстрой (Dijkstra) и его студентами в 1968 г. Эта система имела следующие уровни:

  Интерфейс пользователя
  Управление вводом-выводом
  Драйвер устройства связи оператора и консоли
  Управление памятью
  Планирование задач и процессов
  Аппаратное обеспечение

Рис. 1.2.1 Слоеная система THE

Слоеные системы хорошо реализуются. При использовании операций нижнего слоя не нужно знать, как они реализованы, нужно лишь понимать, что они делают. Слоеные системы хорошо тестируются. Отладка начинается с нижнего слоя и проводится послойно. При возникновении ошибки мы можем быть уверены, что она находится в тестируемом слое. Слоеные системы хорошо модифицируются. При необходимости можно заменить лишь один слой, не трогая остальные. Но слоеные системы сложны для разработки: тяжело правильно определить порядок слоев и что к какому слою относится. Слоеные системы менее эффективны, чем монолитные. Так, например, для выполнения операций ввода-вывода программе пользователя придется последовательно проходить все слои от верхнего до нижнего.

1.2.8. Виртуальные машины

В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину, когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько иной подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как голое железо – копия всего hardware в вычислительной системе, включая процессор, привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. И он остается с этим железом один на один. При попытке обратиться к такому виртуальному железу на уровне привилегированных команд в действительности происходит системный вызов реальной операционной системы, которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою операционную систему на виртуальную машину и делать с ней все, что душа пожелает.

 

Программа пользователя Программа пользователя Программа пользователя
MS-DOS Linux Windows NT/XP
Виртуальное аппаратное обеспечение Виртуальное аппаратное обеспечение Виртуальное аппаратное обеспечение
Реальная операционная система
Реальное аппаратное обеспечение

Рис. 1.2.2. Вариант виртуальной машины

Первой реальной системой такого рода была система CP/CMS, или VM/370, как ее называют сейчас, для семейства машин IBM/370.

Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальным компьютером, и, как правило, они очень громоздки. Преимущество же заключается в использовании на одной вычислительной системе программ, написанных для разных операционных систем.

1.2.9. Микроядерная архитектура

Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой (microkernel architecture) операционной системы, когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром. Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора, первичную обработку прерываний, операции ввода-вывода и базовое управление памятью.

Рис. 1.2.3. Микроядерная архитектура операционной системы

Остальные компоненты системы взаимодействуют друг с другом путем передачи сообщений через микроядро.

Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

В то же время микроядерная архитектура операционной системы вносит дополнительные накладные расходы, связанные с передачей сообщений, что существенно влияет на производительность. Для того чтобы микроядерная операционная система по скорости не уступала операционным системам на базе монолитного ядра, требуется очень аккуратно проектировать разбиение системы на компоненты, стараясь минимизировать взаимодействие между ними. Таким образом, основная сложность при создании микроядерных операционных систем – необходимость очень аккуратного проектирования.

1.2.10. Смешанные системы

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, ядро операционной системы Linux представляет собой монолитную систему с элементами микроядерной архитектуры. При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра – так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Наиболее тесно элементы микроядерной архитектуры и элементы монолитного ядра переплетены в ядре Windows NT. Хотя Windows NT часто называют микроядерной операционной системой, это не совсем так. Микроядро NT слишком велико (более 1 Мбайт), чтобы носить приставку "микро". Компоненты ядра Windows NT располагаются в вытесняемой памяти и взаимодействуют друг с другом путем передачи сообщений, как и положено в микроядерных операционных системах. В то же время все компоненты ядра работают в одном адресном пространстве и активно используют общие структуры данных, что свойственно операционным системам с монолитным ядром. По мнению специалистов Microsoft, причина проста: чисто микроядерный дизайн коммерчески невыгоден, поскольку неэффективен.

Таким образом, Windows NT можно с полным правом назвать гибридной операционной системой.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1002; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.