Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы минимизации




Ключ на КМОП - транзисторах с индуцированным каналом

Крутизна

Полевые транзисторы с изолированным затвором

Схема ключа на полевом транзисторе с p-n переходом

Входные и выходные характеристики полевого

Биполярные транзисторы

Краткий конспект лекций

Основы электроники

 

 

 

Составила Глазева О. В.

 

 

Одесса

 

 

Содержание

Введение

1. Полупроводниковые диоды

1.1. Принцип работы диода

1.2. Вольт-амперная характеристика диода (ВАХ)

1.3. Выпрямительные диоды

1.4. Высокочастотные диоды

1.5. Импульсные диоды

1.6. Стабилитроны и стабисторы

2.1. Общие принципы

2.2. Основные параметры транзистора

2.3. Схемы включения транзисторов

2.3.1. Схема с общим эмиттером

2.3.2. Схема включения транзистора с общим коллектором

2.3.3. Схема с общей базой

3. Полевые транзисторы

3.1. Полевой транзистор с p-n переходом

транзистора с p-n переходом и каналом n-типа

3.2.1. Входные и выходные характеристики МОП – транзистора

с каналом n - типа

3.2.2. МОП – транзисторы с индуцированным каналом

4. Тиристоры

4.1. Принцип работы тиристора

4.2. Основные параметры тиристоров

4.3. Двухполупериодный управляемый выпрямитель

4.4. Регулятор переменного напряжения

5. Интегральные микросхемы

5.1. Общие положения

5.2. Аналоговые микросхемы. Операционные усилители

5.2.1. Свойства ОУ

5.2.2. Основы схемотехники ОУ. Входной дифференциальный

каскад

5.2.3. Основные схемы включения ОУ. Инвертирующее

включение

5.2.4. Неинвертирующее включение

5.2.5. Ограничитель сигнала

5.2.6. Компараторы

5.2.7. Активные фильтры

6. Цифровые интегральные микросхемы

6.1. Общие понятия

6.2. Основные свойства логических функций

6.3. Основные логические законы

6.4. Функционально полная система логических элементов

6.5. Обозначения, типы логических микросхем и структура ТТЛ

6.6. Синтез комбинационных логических схем

6.6.2. Примеры минимизации, записи функции и реализации

6. 7. Интегральные триггеры

6.7.1. RS асинхронный триггер

6.7.2. Асинхронный D – триггер

6.7.3. Синхронный D - триггер со статическим управлением

6.7.4. Синхронный D -триггер с динамическим управлением

6.7.5. Синхронный JK – триггер

6.7.6. T - триггер

6.7.7. Вспомогательные схемы для триггеров. Схема

генератора импульсов

 

Литература

 

 

Введение

 

Электроника – это область науки и техники, которая занимается изучением физических основ функционирования, исследованием, разработкой и применением приборов, принцип действия которых основан на протекании электрического тока в вакууме, газе, в твердом теле. Такими приборами являются: электронные приборы (ток в вакууме), ионные приборы (ток в газе), полупроводниковые приборы. В настоящее время наиболее распространены полупроводниковые приборы.

Часть электроники, которая занимается вопросами применения различных приборов, называется промышленной электроникой. Она разделяется на два направления:

1. Информационная электроника – занимается вопросами управления различными процессами. К устройствам информационной электроники относятся: аналоговые усилители и преобразователи сигналов, генераторы сигналов, оптоэлектронные устройства, логические элементы, цифровые устройства, микропроцессорные системы. Они предназначены для измерения, обработки, передачи, хранения и отображения информации.

2. Энергетическая (силовая) электроника – занимается преобразованием параметров электроэнергии. К устройствам энергетической электроники относятся: выпрямители, инверторы, преобразователи частоты, регуляторы напряжения.

В качестве примера на рис.1 показана структура электропривода с АД, где устройство управления УУ и система датчиков Д относятся к устройствам информационной электроники, а полупроводниковый преобразователь электроэнергии ПП - к устройствам энергетической электроники.

 

Рис. 1 Структура электропривода

 

Начало развития электроники можно отнести к началу 20 века, когда в 1904 г. англичанин Д.Флеминг создал первую электронную лампу (диод). В 1906 г. американец Л.Форест, введя в диод управляющий электрод, получил триод, способный усиливать и генерировать электрические колебания. В России первую электронную лампу создал в 1914 г. Н.Д.Папалекси.

В 30-х годах началось активное изучение полупроводниковых материалов с целью их использования в электронике. Большой вклад в решение этой проблемы внесли теоретические работы советских физиков, возглавляемых академиком А.Ф.Иоффе.

В 1948 г. американскими учеными был изобретен первый полупроводниковый усилительный прибор – биполярный транзистор. Аналогичные приборы несколько позже разработали советские ученые А.В.Красилов и С.Г. Мадоян.

Обладая существенными преимуществами по сравнению с электронными лампами, транзисторы обусловили бурное развитие полупроводниковой электроники. Применение транзисторов в сочетании с печатным монтажом позволило получить малогабаритные электронные устройства с относительно малым потреблением электроэнергии.

В 1957 г. фирмой General Electric был создан тиристор.

В 1958 г. появился первый полевой транзистор.

Дальнейший скачок в развитии электроники стал возможен с появлением интегральных микроэлектроных схем. Первая интегральная микросхема была анонсирована в 1959 г. американцем Килби. Интегральная микросхема (ИС) – это электронное устройство, элементы которого изготовляются в едином технологическом цикле, т.е. одновременно, на едином основании - подложке. Промышленный выпуск ИС был начат в начале 60-х годов. Первая цифровая интегральная микросхема ТТЛ-логики появилась в 1961 г., первый интегральный операционный усилитель mA709 был разработан в 1964 г. двадцатичетырехлетним американским ученым Р. Видларом (спустя два года после окончания университета, где он получил степень бакалавра). Все это способствовало бурному прогрессу в развитии информационной электроники и микроминиатюризации электронных устройств. Эти тенденции получили еще большее развитие с появлением больших (БИС – 1969 г.), а затем и сверхбольших (СБИС – 1975 г.) интегральных микросхем, которые позволили разработать и внедрить во все сферы деятельности человека микроЭВМ. Основным элементом в таких ЭВМ стал микропроцессор – СБИС, содержащая десятки и сотни тысяч элементов на одном кристалле. Первый четырехразрядный микропроцессор был изготовлен фирмой Intel в 1971 г., а на следующий год - восьмиразрядный.

В настоящее время интегральные микросхемы и дискретные полупроводниковые приборы стали основной элементной базой современных устройств промышленной электроники. Совместно с ними применяются резисторы, конденсаторы, дроссели.

 


1. Полупроводниковые диоды

1.1. Принцип работы диода

Основой современных полупроводниковых приборов является кремний или германий. Чтобы полупроводниковый элемент был пригоден для создания электронного устройства, в него необходимо добавить примесь. Существует два типа полупроводников c примесями: n–типа и p–типа. Для получения полупроводника n–типа в него добавляют донорную примесь (например, мышьяк, сурьма), которая обеспечивает появление в межатомном пространстве свободных электронов, а в кристаллической решетке появляется такое же количество неподвижных положительных ионов донора. Для получения полупроводника р–типа в него добавляют акцепторную примесь (например, индий, галлий), которая обеспечивает появление в межатомном пространстве свободных дырок, а в кристаллической решетке появляется такое же количество неподвижных отрицательных ионов акцептора. Дырка – это место в кристаллической решетке полупроводника, где недостает электрона. Положительный ион – это атом, потерявший электрон, а отрицательный ион – это атом, получивший электрон. В твердых телах атомы неподвижны, т.к. закреплены в узлах кристаллической решетки.

В полупроводниках n–типа ток переносят отрицательно заряженные частицы – электроны, а в полупроводниках p–типа – положительно заряженные частицы – дырки. Перемещение дырок – это перемещение мест с отсутствующими электронами в результате движения электронов.

Основой полупроводникового диода является двухслойная структура, созданная на основе кристалла полупроводника, имеющего две области. В одну область кристалла вводится донорная примесь (n- область), а в другую – акцепторная (p- область). Структура полупроводникового диода имеет вид, показанный на рис.2.

 

Рис.2 Структура полупроводникового диода

 

Граница раздела двух областей с различной проводимостью называется. p-n переходом. Из-за встречной диффузии через p-n переход дырок (из р- в n- область) и электронов (из n- в р- область) в тонком слое вблизи p-n перехода происходит рекомбинация (взаимная компенсация) дырок и электронов (дырки заполняются электронами). В результате между р- и n- областями образуется так называемый обедненный слой, который имеет очень мало свободных носителей заряда. Как только электроны покидают n- область, в ней начинает действовать суммарный заряд лишних положительных ионов, который будет тянуть свободные электроны обратно и препятствовать их движению в сторону р-n перехода. Точно также, когда дырки покидают p- область, в ней начинает действовать суммарный заряд лишних отрицательных ионов, который будет тянуть свободные дырки обратно и препятствовать их движению в сторону р-n перехода. Заряды неподвижных ионов примесей оказываются не скомпенсированы и создадут по обе стороны p-n перехода область объемного заряда – рис.2. Этот объемный заряд образует потенциальный барьер. Энергия носителей зарядов оказывается недостаточной, чтобы преодолеть этот барьер, поэтому их диффузия прекращается.

Если к полупроводниковому диоду приложить внешнее напряжение так, чтобы его положительный потенциал присоединен к p-слою, то дырки и электроны будут как бы отталкиваются источником внешнего напряжения в сторону р-n перехода. Потенциальный барьер уменьшается, переход зарядов через границу и их взаимная компенсация возрастают, следовательно, через диод будет протекать ток. Источник будет поставлять в n-слой новые электроны, а в p-слое создавать новые дырки.

При противоположном знаке напряжения электроны притягиваются к положительному потенциалу источника, а дырки - к отрицательному, потенциальный барьер в области p-n перехода увеличивается, переход зарядов через границу и, следовательно, ток через диод может прекратиться.

Полупроводниковый диод – это своеобразный конденсатор: области n и p можно рассматривать как обкладки конденсатора, а p-n переход как изолятор между обкладками. Различают диффузионную (при прямом приложенном напряжении) и барьерную (при обратном напряжении) емкости диода. Емкость полупроводникового диода это бесплатное приложение к его основному свойству к односторонней проводимости. Во многих случаях это свойство является вредным, т.к. ухудшает работу диода на высоких частотах, в импульсных режимах и обуславливает его инерционность.

Изображение диода на электрической схеме показано на рис. 3. Вывод p-слоя называется анодом (А). Вывод n-слоя называется катодом (К).

Рис. 3 Изображение диода

 

Включение диода в простейшую электрическую цепь показано на рис. 4, 5. На рис.4 диод является проводником, поэтому в цепи должен быть элемент, ограничивающий ток. Таким элементом является резистор Rн. Ток через него равен: I=(U - Uпр)/Rн.Uпр»0, поэтому I=U/Rн; URн=IRн=U.

 

 

Рис.4 Прямое включение диода Рис. 5 Обратное включение диода

 

При обратном включении диода через него протекает незначительный обратный ток. Для диодов на малые токи обратный ток может составлять десятки нА, у больших диодов - десятки mА. Схема при обратном включении диода представлена на рис. 5. Для нее U=U+Uобр, U=Iобр×Rн»0, т.к. Iобр»0, поэтому U=Uобр.

Часто диод включен в схему, где приложенное напряжение является переменным. Виды этих напряжений:

1. Синусоидальное, показано на рис. 6.

2. Прямоугольное, показано на рис.7

3. Треугольное.

4. Экспоненциальное.

Рис. 6 Синусоидальное напряжение Рис. 7 Прямоугольное напряжение

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 436; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.