Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мокрые пылеулавители

Аппараты мокрой очистки газов имеют широкое распространение, так как характеризуются высокой эффективности очистки от мелкодисперсных пылей с диаметром менее 1,0 мкм, а также возможностью очистки от пыли горячих и взрывоопасных газов. Одноко мокрые пылеулавители обладают рядом недостатков, что ограничивает область их применения: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоотходах при охлаждении газов до точки росы; необходимость создания оборотных систем подачи воды в пылеулавитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли либо на поверхности капель жидкости, либо на поверхность пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения. Кроме этих основных сил на процесс осаждения влияют турбулентная диффузия, взаимодействие электрически заряженных частиц, процессы конденсации, испарения и др. Во всех случаях очистки газов в мокрых пылеулавителях важным фактором является смачиваемость частиц жидкостью (чем лучше смачиваемость, тем эффективнее процесс очистки).

Конструктивно мокрые пылеулавители разделяют на скрубберы Вентури, форсуночные и центробежные скрубберы, аппараты ударно-инерционного типа, барботажно-пенные аппараты и др.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхности капель наибольшее практическое применение нашли скрубберы Вентури (рис. 28). Основная часть скруббера – сопло Вентури, в конфузорную часть которого подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла (в горловине) 2 происходит разгон газа от входной скорости (15-20 м/с) до скорости в узком сечении сопла 60-150 м/с и более. Процесс осаждения частиц пыли на каплях жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной мере зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части (камере смешения) 3 сопла поток тормозится до скорости 15-20 м/с и подается в каплеулавитель (камеру разделения) 4. Каплеулавитель обычно выполняют в виде прямоточного циклона или скруббера ВТИ. Скруббер Вентури обеспечивает эффективность очистки 96-98% аэрозолей и более при начальной концентрации примесей 100 г/м3. Удельный расход воды на орошение при этом составляет 0,4-0,6 л/м3.

 

 

Рис. 28. Скруббер Вентури:

1 – сопло; 2 – горловина; 3 – камера смешения; 4 – камера разделения.

 

Одним из удачных конструктивных решений совместной компоновки скруббера Вентури и каплеулавителя служит конструкция (рис. 29) коагуляционно-центробежного мокрого пылеулавителя (КЦМП). Сопло Вентури 1 установлено в корпусе циклона 2, а для закручивания воздуха используется специальный закручиватель 3. Промышленные КЦМП работают при скоростях в узком сечении трубы Вентури 40-70 м/с, удельных расходах воды на орошение 0,1-0,5 л/м3 и имеют габариты на 30% меньше, чем скрубберы Вентури.

 

 

 

Рис. 29. Коагуляционно-центробежный мокрый пылеулавитель:

1 – сопло Вентури; 2 – корпус циклона; 3 – закручиватель потока.

 

Скрубберы Вентури широко используются в системах очистки газов от туманов. Эффективность очистки воздуха от тумана со средним размером частиц около 0,3 мкм достигает 99,9%, что сравнимо с высокоэффективными фильтрами.

В некоторых конкретных случаях процесс очистки может быть значительно рационализирован путем избирательного усиления действия физических факторов. Например, при улавливании крупнодисперсной пыли хорошие результаты можно получить при использовании газопромывателей ударно-инерционного действия. На рис. 30 приведена схема скруббера Дойля, в котором акцент делается на преимущественное использование сил инерции улавливаемых частиц. Конструктивно это решается путем организации лобового удара струи газа о зеркало жидкости с резким изменением направления газового потока, а также путем использования перегородок.

 

 

Рис. 30. Скруббер Дойля:

1 – подводящая запыленный газ труба; 2 – конус; 3 – перегородки.

 

В нижней части подводящей трубы 1 (рис. 30) установлены конусы 2 для увеличения скорости выходящего газа до 35-55 м/с. Разогнанные таким способом частицы пыли отбрасываются силой инерции на периферию газовой струи и захватываются жидкостью. Дополнительным положительным эффектом является частичное дробление жидкой фазы газовым потоком с улавливанием затем образующихся капель перегородками 3. Аэродинамическое сопротивление таких аппаратов составляет 500-4000 Па. Однако повышенное сопротивление компенсируется высокой производительностью этих аппаратов и малым удельным расходом промывной жидкости (в среднем 0,12 л/м3). В целом же инерционные газопромыватели эффективны для улавливания крупных частиц, и поэтому используются чаще всего для предварительной очистки газов.

Разновидностью аппаратов для улавливания пыли осаждением на каплях жидкости является форсуночные скрубберы (рис. 31,а). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток и мелкодисперсная пыль, распределяясь по всему сечению корпуса 1, поднимается в верх навстречу потоку капель, подаваемых в скруббер через форсуночные пояса 2. Удельный расход воды в форсуночных скрубберах 3-6 л/м3, гидравлическое сопротивление аппарата до 250 ПА при скоростях движения потока газа в корпусе скруббера 0,7-1,5 м/с.

 

 

а б

 

Рис. 31. Форсуночный (а) и центробежный (б) скрубберы:

1 – корпус; 2 – форсуночный пояс; 1 – сопло; 2 – пленка жидкости;

3 – патрубок для ввода газа. 3 – корпус аппарата; 4 – бункер;

5 – вводный патрубок.

 

В тех случаях, когда требуется очистка небольших масс горячих газов от загрязнений с размером частиц более 15-20 мкм, можно применять простейшие оросительные устройства, которые выполняются в виде ряда форсунок, встроенных в газоход. Удельный расход воды в таких системах выбирается равным 0,1-0,3 л/м3. Скорость газового потока в газоходе в целях исключения интенсивного каплеуноса не должна превышать 3 м/с.

В аппаратах центробежного типа (рис. 31, б) частицы пыли отбрасываются на пленку жидкости 2 центробежными силами, возникающими при вращении газового потока в аппарате за счет тангенсального расположения входного патрубка 5 в корпусе аппарата. Пленка жидкости толщиной не менее 0,3 мм создается подачей воды через сопло 1 и непрерывно стекает вниз, увлекая в бункер 4 частицы пыли. Эффективность очистки газа от пыли в аппаратах такого типа зависит главным образом от диаметра корпуса аппарата 3, скорости газа во вводном патрубке и дисперсности пыли.

К мокрым пылеулавителям относятся барботажно-пенные пылеулавители с провальной (рис. 32, а) и переливной решетками (рис. 32, б). В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от частиц пыли за счет осаждения частиц на внутренние поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2-2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газов и бразгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газов от мелкодисперсной пыли около 95-96% при удельных расходах воды 0,4-0,5 л/м3.

 

 

 

 

Рис. 32. Барботажно-пенный пылеулавитель с провальной (а) и переливной (б) решетками:

1 – корпус аппарата; 2 – жидкость и пена; 3 – решетка.

 

<== предыдущая лекция | следующая лекция ==>
Сухие пылеулавители | Электрофильтры
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 464; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.