Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полевые транзисторы




Выпрямительное устройство с умножением напряжения.

Принцип действия основных схем выпрямления с умножением напряжения сводится к тому, что на нагрузку разряжаются несколько последовательно включённых конденсаторов, каждый из которых заряжается через выпрямитель до сравнительно небольших напряжений. Схемы выпрямления с умножением напряжения целесообразно применять для получения достаточно высоких напряжений при малых токах нагрузки. В таких условиях конденсаторы схемы лишь частично заряжаются на нагрузку и ёмкость их может быть небольшой.

Рассмотрим Двухполупериодный выпрямитель с удвоением напряжения, который получил наибольшее распространение.

В положительный полупериод напряжения U2 конденсатор С1 заряжается до амплитудного значения приложенного напряжения U2m. В отрицательный полупериод напряжения U2 заряжается C2 до амплитудного значения напряжения U2m (полярность напряжений Uс1 и Uс2 показаны на рисунке).

Результирующее напряжение, приложенное к нагрузке, равно сумме напряжений на С1 и С2 и равно удвоенному амплитудному значению приложенного U2, т.е. Uн=2U2m.

В случае подключения Rн выпрямленное напряжение несколько уменьшается, однако, при малых токах нагрузки и больших ёмкостях С1 и С2 это уменьшение незначительно.

 

Полевой транзистор представляет собой прибор, в котором управление проходящим через него током осуществляется объёмным зарядом электронно-дырочного перехода. Такие транзисторы называют униполярными, так как их работа основана на использовании носителей заряда одного знака; только дырок или только электронов. С этой точкой зрения обычные транзисторы, рассмотренные ранее, называются биполярными, т.к. в их работе применяют как положительные (дырки), так и отрицательные (электроны) носители заряда. Термин “полевые” характеризует механизм управления током: с помощью электрического поля, а не тока, как в биполярных транзисторах.

Полевые транзисторы по принципу действия подразделяются на транзисторы с управляющим p-n-переходом и транзисторы со структурой МДП (металл-диэлектрик-полупроводник), МОП.

Рассмотрим вначале полевой транзистор с уп-равляющим p-n переходом. Одна из его разновид-ностей носит наз-вание унитрон. Унитрон представляет собой пластинку n/n n-типа, имеющую на торцах контакты, а на обеих больших гранях слои p-типа (вариант p-типа, не имея принципиальных отличий, уступает типу n по частотным свойствам, шумам и стабильности).

Оба p-слоя соединены между собой и образует электрод, называемый затвором. К двум другим омическим контактам подсоединяется источник питания. При этом ток, контакт, от которого движутся основные носители (электроны) называется истоком, а тот к которому они движутся – стоком.

Исходя из сказанного, схема включения унитрона выглядит следующим образом:

 

Принцип действия унитронов прост и заключается в том, что при изменении Uз меняется ширина p-n переходов и, следовательно, ширина пластинки в области затвора. Это приводит к изменению сопротивления пластинки полупроводника и, следовательно, к изменению тока через унитрон. Основной полупроводник применяется сравнительно высокоомный, т.е. концентрация примесей в нём невелика. Область, расположенная между p-n-переходами называется каналом. Рассматриваемый нами транзистор с n-каналом. Аналогично работает транзистор с p-каналом. Иногда поэтому унитрон называют канальный транзистор. Так как унитрон работает при обратном смещении на затворе, он обладает очень высоким выходным сопротивлением. Оно составляет 107÷109 Ом, в то время как для биполярных транзисторов оно = 102÷103 Ом. Большое входное сопротивление позволяет осуществлять управление изменением тока в выходной цепи входным напряжением. Унитрон имеет много общего с электронными лампами (большое входное сопротивление). Исток и сток аналогичны соответственно катоду и аноду лампочки. Кроме этого, при возрастании отрицательного напряжения затвора до U30, расширившиеся переходы могут перекрыть всё сечение полупроводника, что вызовет отсечку тока в рабочей цепи. При Uс неравном нулю ввиду того, что вдоль канала существует падение напряжения от Uс, разность потенциалов между электронным n/n и дырочным слоев в разных точках p-n перехода будет различной. Поэтому обратное напряжение на p-n- переходах меняется от Uз у истока до Uз+Uс у стока. Поэтому при приближении к стоку канал сужается. С ростом Uс переходы почти смыкаются. В отличие от отсечки тока (при возрастании Uз) смыкание переходов не приводит к отсечке тока, т.к. само смыкание является следствием возрастания тока. (Если бы ток уменьшался, то переходы разомкнулись бы, и это способствовало бы увеличению тока). Вместо отсечки тока происходит отсечка его приращений, т.е. резкое возрастание дифференциального сопротивления канала. Такой режим называется режимом насыщения, а напряжение, при котором он наступает – напряжением насыщения (точки Н). С возрастанием U30 режим насыщения наступает при меньших значениях Uс. Напряжение насыщения можно получить из условия: Uз+Uс=Uзо => Uсн=Uзо-Uз.

Унитрон может работать лишь при нулевом или отрицательных напряжениях Uз. При Uз>0 появляется прямой ток через затвор – исток и rвх резко понижается.

Усилительные свойства унитрона определяются крутизной его характеристики S=dIс/dUз.

Ri=dUc/dIc; μ=S·Ri

Инерционность унитрона обусловлена зарядом барьерных ёмкостей переходов. Максимальная рабочая частота (до сотен МГц) определяется постоянной времени входной цепи RC, где R-сопротивление канала, через которое осуществляется зарядка барьерной ёмкости (ёмкости затвора) C:

f0=1/2πRC

Внутреннее сопротивление составляет 0,2÷1 Мом. Входное сопротивление около 1 Мом.

Разновидностью канального транзистора является технетрон (Франция), конструктивно отличающийся тем, что в области затвора стержень имеет форму цилиндра. Канал имеет круговое сечение. Для создания затвора в средней части стержня электролитически стравливается до диаметра 50-80 мкм. Затем в кольцевое углубление осаждается индий и образуется p-n-переход. Технетрон является менее мощным прибором, чем унитрон. Значительно большей мощности позволяет получить третья разновидность канального транзистора – алкатрон.

 

Полевые транзисторы с изолированным затвором

Полевые транзисторы с изолированным затвором - приборы с диэлектрическим слоем между металлическим затвором и полупроводником. Поэтому и название МДП (металл-диэлектрик-полупроводник). В весьма распространенном случае, когда в качестве диэлектрика используются двуокись кремния, их называют МОП (металл-оксид-полупроводник) – транзисторами.

Транзисторы с изолированным затвором подразделяются: МДП-транзисторы со встроенным каналом (с проводящим каналом) и МДП-транзисторы с индуцированным каналом.

Их структуры изображены на рисунке.

 

 

Наличие диэлектрика снимает ограничения на полярность смещения Uз (у полевых транзисторов с управляющим p-n переходом Uз - однополупериодное): она может быть как положительной, так и отрицательной, причём, ток затвора отсутствует.

Семейство выходных (стоковых) ВАХ МДП-транзистора со встроенным p-каналом выглядит следующим образом (аналогично выходным характеристикам полевого транзистора с управляющим p-n переходом).

 

В настоящее время тран-зисторы с индуциро-ванным каналом вследствие простоты их изготов-ления полу-чают наиболь-шее распространение. Рассмотрим эти транзисторы (см. рис. 2).

При нулевом напряжении между затвором и истоком такой транзистор представляет собой два встречно включённых p-n перехода, так как отсутствует поверхностный слой, тип электропроводности совпадает с типом электропроводности истока и стока. При этом ток стока очень мал.

С ростом отрицательного напряжения между затвором и истоком увеличивается заряд примесных ионов, так как основные носители заряда отталкиваются от поверхности. Но одновременно увеличивается и заряд не основных носителей, притягиваемых к поверхности. В конце концов нарастающий заряд не основных носителей превысит заряд оставшихся основных носителей, то есть изменится тип проводимости поверхностного слоя полупроводника. Этот случай характеризуют термины “инверсия типа проводимости”, а образовавшийся вблизи поверхности слой полупроводника с обратным типом проводимости называют инверсионным слоем. Именно этот слой играет роль индуцированного канала. Напряжение, при превышении которого образуется инверсионный канал, называется пороговым напряжением Uо.

При образовании инверсионного слоя исток и сток окажутся соединенными тонким проводящим слоем и между ними потечёт ток. Семейство выходных ВАХ МДП-транзистора с индуцированным каналом приведены на рисунке.

К стоку приложен минус источника напряжения Uc, а к истоку плюс, отсюда следует, что входное сопротивление полевого транзистора с изолированным затвором имеет большую величину, определяемую сопротив-лением изоляции. Обычно оно составляет 1014 Ом, при использовании специальных мер доходит до 1017 Ом и выше.

В МДП-транзисторе со встроенным каналом между истоком и стоком создан тонкий поверхностный канал, тип электропроводности которого совпадает с типом электропроводности истока и стока. При подключении источника напряжения между истоком и стоком (плюс к истоку, минус к стоку) через транзистор будут протекать ток даже при нулевом смещении на затворе. МДП-транзистор со встроенным каналом может работать в режимах обогащения и обеднения.

При подаче на затвор относительно истока отрицательного напряжения основные носители (дырки) притягиваются к поверхности и образуют тонкий канал с тем же типом проводимости (p), но с гораздо меньшим удельным сопротивлением (режим обогащения). Это способствует росту тока стока.

При подаче на затвор относительно истока положительного напряжения основные носители заряда (дырки) отталкиваются от поверхности. В этом случае вместо тонкого канала с повышенной проводимостью образуется сравнительно толстый слой с пониженной проводимостью и, следовательно, ток стока уменьшается. Такой режим работы называется режимом обеднения.

Режим работы транзистора определяется полярностью напряжения на затворе относительно истока и типом электропроводности канала. Напряжение на затворе Uo, при котором прекращается ток стока, называется пороговым напряжением.Напряжение между стоком и истоком, начиная с которого прекращается рост тока стока называется напряжением насыщения Uсн.

Как видно из описания принцип работы МДП-транзистора со встроенным каналом аналогичен принципу, использованному в полевом транзисторе с управляющим p-n переходом.

МДП-транзисторы с индуцированным каналом могут работать только в режиме обогащения и только при одной полярности напряжения на затворе, знак которой определяется типом электропроводности канала (напряжение на стоке и затворе относительно истока имеют одинаковые знаки).

Графическое обозначение МДП-транзистора с изолированным затвором.

 

 

В настоящее время конструкция большинства полевых транзисторов является симметричной с взаимозаменяемыми истоком и стоком (отличие от ламп).

В полевых транзисторах подложка (основной полупроводник) либо соединена с истоком (в дискретных полевых транзисторах), либо имеет какой-то потенциал относительно истока (в интегральных схемах).

При обратном смещении на подложке существенно уменьшается сопротивление насыщения стока, что сопровождается соответствующим спадом коэффициента усиления по напряжению.

SUз – отражает усилительные свойства транзистора;

Ri – внутреннее сопротив-ление транзистора: ; Ссн – величина, определяемая геометрией и материалом транзистора (обычно доли пикофарад).

Величины Сзн и Сзс не превосходят 1÷3 пФ.

Рабочие частоты полевых транзисторов с изолированным затвором составляют 300÷50 МГц и выше (у транзисторов с управляемым p-n переходом частота ниже).

У полевых транзисторов параметры могут изменяться с изменением температуры. Однако эти изменения меньше, чем у биполярных транзисторов. Так на арсениде галлия получали усиления вплоть до 350°С. При температуре до 250°С усиление по мощности падало, не более чем, вдвое.

Интегральной особенностью МДП-транзисторов является наличие критического значения тока стока, при котором этот ток почти не зависит от температуры.

Полевые транзисторы имеют преимущество перед биполярными при использовании в интегральных схемах (ИС). Объединение биполярных транзисторов в ИС затрудненно, главным образом, по той причине, что в этих приборах ток протекает перпендикулярно к поверхности, тогда как предпочтительная конструкция ИС заключается в расположении компонент в плоскости поверхности. Этому условию удовлетворяет полевой транзистор. Кроме этого, достоинства полевого транзистора заключается ещё и том, что он по существу представляет сопротивление и в таком качестве может использоваться в схемах.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1643; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.