Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гипербола. В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b)




М

Эллипс

Окружность

В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b).

Пример 2.1. Найти координаты центра и радиус окружности, если ее уравнение задано в виде 2x2 + 2y2 – 8x + 5y – 4 = 0.

Решение. Для нахождения координат центра и радиуса окружности выделим полные квадраты:

x2 + y2 – 4x + 2,5y – 2 = 0

x2 – 4x + 4 –4 + y2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2)2 + (y + 5/4)2 – 25/16 – 6 = 0

(x – 2)2 + (y + 5/4)2 = 121/16

Отсюда находим О(2; -5/4); R = 11/4.

 

 

Определение 2.1. Эллипсом называется кривая, заданная уравнением .

Определение 2.2. Фокусаминазываются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

 

у

 

F1 O F2 х

 

 

F1, F2 – фокусы. F1(-c; 0); F2(c; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением a2 = b2 + c2.

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2(по теореме Пифагора). В случае, если точка М находится на пересечении эллипса с горизонтальной осью, r1 + r2 = a – c + a + c. Т.к. по определению сумма r1 + r2 – постоянная величина, то, приравнивая, получаем: a2 = b2 + c2

r1 + r2 = 2a.

Определение 2.3. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом.

е = с/a.

Т.к. с < a, то е < 1.

Определение 2.4. Величина k = b/a называется коэффициентом сжатияэллипса, а величина 1 – k = (a – b)/a называется сжатием эллипса. Коэффициент сжатия и эксцентриситет связаны соотношением: k2 = 1 – e2.

Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность. Если для точки М(х1, у1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне эллипса.

Теорема. Для произвольной точки М(х, у), принадлежащей эллипсу верны соотношения: r1 = a – ex, r2 = a + ex.

Доказательство. Выше было показано, что r1 + r2 = 2a. Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r2 = a + ex. Теорема доказана.

С эллипсом связаны две прямые, называемые директрисами. Их уравнения: x = a/e; x = -a/e.

Теорема. Для того, чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

 

Пример 2.2. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса, заданного уравнением:

1) Координаты нижней вершины: x = 0; y2 = 16; y = -4.

2) Координаты левого фокуса: c2 = a2 – b2 = 25 – 16 = 9; c = 3; F2(-3; 0).

3) Уравнение прямой, проходящей через две точки:

Пример 2.3. Составить уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), большая ось равна 2.

Решение. Уравнение эллипса имеет вид: . Расстояние между фокусами: 2c = , таким образом, a2 – b2 = c2 = ½, по условию 2а = 2, следовательно а = 1, b = Итого: .

Определение 2.5. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

y

M(x, y)

b

 

a

r1 r2

F1

 

По определению ïr1 – r2ï= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.

Выберем на гиперболе произвольную точку М(х, у). Тогда:

обозначим с2 – а2 = b2 (геометрически эта величина – меньшая полуось)

. Получили каноническое уравнение гиперболы.

Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат. Ось 2а называется действительной осью гиперболы. Ось 2b называется мнимой осью гиперболы. Гипербола имеет две асимптоты, уравнения которых

Определение 2.6. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось. С учетом того, что с2 – а2 = b2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Определение 2.7. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Пример 2.4. Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса .

Для эллипса: c2 = a2 – b2. Для гиперболы: c2 = a2 + b2.

 

 
 


 

 

 

 

Уравнение гиперболы: .

Пример 2.5. Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c2 = 25 – 9 = 16. Для гиперболы: c2 = a2 + b2 = 16, e = c/a = 2; c = 2a; c2 = 4a2; a2 = 4;

b2 = 16 – 4 = 12.

 

Итого: - искомое уравнение гиперболы.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 594; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.