Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Законы регулирования и автоматические регуляторы




 

Для реализации этих переходных процессов в САУ реальными объектами применяют автоматические регуляторы – специальные автоматические устройства, подключаемых к объекту регулирования, которые обеспечивают поддержание заданных значений его регулируемых величин или изменение их по определенному закону.

На рис. 10.2 приведена схема простейшей системы управления с регулирующим устройством РУ.

Законом (алгоритмом) регулирования называют математическую зависимость между выходным регулирующим воздействием Yр и входным отклонением Xр регулируемой величины Y от заданного значения Yо

Yр = f (Xр), где Xр = Yo – Y.

 
 

 


Рис. 10.2. Схема системы управления

 

В идеальных условиях работы САР (линейность характеристики объекта, стационарность случайных возмущений, малая инерционность регулятора по сравнению с объектом) регулятор должен иметь линейную передаточную функцию

По характеру работы регуляторы делятся на непрерывные, импульсные и релейные. Наиболее широкое распространение получили регуляторы непрерывного действия, использующие линейные законы регулирования вида

, (10.1)

где Ci – настройки регулятора.

Различают три типовых закона регулирования:

П – пропорциональный; И – интегральный; Д – дифференциальный.

Для управления реальными объектами в современных регулирующих устройствах реализуются также следующие комбинации этих законов:

ПИ – пропорционально–интегральный;

ПД – пропорционально–дифференциальный;

ПИД – пропорционально–интегральный–дифференциальный.

Настройками непрерывных регуляторов П–, И–, ПИ–, ПД– и ПИД–действия можно реализовать любой из трех типовых оптимальных процессов регулирования.

В соответствии с реализуемыми законами регулирования регуляторы непрерывного действия делятся на следующие типы.

1. Пропорциональные или П–регуляторы, в которых выходная величина Yрр связана с входной величиной Xр соотношением Yр = Kp × Xр. Передаточная функция – Wр(p) = Кр, где Кр – коэффициент передачи регулятора.

Каждому значению регулируемого параметра Y соответствует определенное значение отклонения Хр. При отклонении Y от заданного значения Xo, на выходе сразу возникает изменение регулирующего воздействия Yp, приводящее к восстановлению заданной величины Y. Такая жесткая зависимость между входной и выходной величинами приводит к статической ошибке системы

Хст = Yуст – Хо, которая обратно пропорциональна Кр.

Зато П–регуляторы просты, работают быстро и устойчиво.

2. Интегральные или И–регуляторы, у которых изменение выходной величины пропорционально интегралу изменения входной величины

 

 

Передаточная функция И–регулятора

 

На рис. 10.3 приведены переходная характеристика И–регулятора (а) и переходной процесс в ТОУ при реализации И–закона регулирования (б).

Постоянная времени интегрирования (время изодрома – перестройки) Ти, от величины которой зависит угол a переходной характеристики Yp(t).

 
 

 


а б

Рис. 10.3. Переходная характеристика И–регулятора (а) и переходной процесс в ТОУ при реализации И–закона регулирования (б)

 

При этом законе регулирования скорость перемещения регулирующего органа пропорциональна отклонению регулируемой величины Y от заданного значения Xo. Отсутствует жесткая зависимость между Xр и Y, поэтому статическая ошибка равна нулю.

Этот регулятор выигрывает по точности, но проигрывает по быстродействию и устойчивости работы. Таким системам регулирования присуща высокая колебательность переходного процесса.

И–регуляторы применяют для управления малоинерционными объектами с небольшим временем запаздывания и существенным самовыравниванием.

3. Пропорционально–интегральные или ПИ–регуляторы, у которых изменение выходной величины пропорционально как изменению входной величины, так и интегралу ее изменения

,

где Tи – время интегрирования, в течение которого регулирующее воздействие, обусловленное работой П–составляющей, будет удвоено под действием И–составляющей регулятора (см. рис. 10.4).

 
 

 


Рис. 10.4. Переходная характеристика ПИ–регулятора

 

Передаточная функция ПИ-регулятора

.

По быстродействию этот регулятор ближе к пропорциональному, чем к интегральному. При этом И–часть устраняет статическую ошибку регулирования.

 

4. Пропорционально–дифференциальные или ПД–регуляторы, которые оказывают суммарное воздействие на регулирующий орган, пропорциональное как отклонению регулируемой величины, так и скорости ее отклонения

,

где TД – время предварения (дифференцирования), с.

Передаточная функция ПД–регулятора имеет вид

Wпд (p) = kр (1 + TД p).

Введение Д–части целесообразно при управлении объектами, в которых сильно проявляется скорость отклонения регулируемой величины. Предваряющее воздействие повышает быстродействие системы, но не исключает статическую ошибку.

 

5. У пропорционально–интегрально–дифференциальных регуляторов (ПИД) изменение выходной величины ур пропорционально и отклонению регулируемой величины, и интегралу этого отклонения, и его скорости

.

На рис. 10.5 представлена переходная характеристика ПИД–регулятора.

 
 

 


Рис. 10.5. Переходная характеристика ПИД–регулятора

 

Передаточная функция ПИД–регулятора

Wпид (p) = Kp (1 + 1/ Ти p – Тд р)

или, после преобразования в канонический вид –

.

По характеру функционирования в САР этот закон с увеличением Тд приближается к ПД, а при уменьшении Ти – к ПИ-закону.

ПИД-закон значительно улучшает качество регулирования, особенно при резких возмущениях. Однако такие регуляторы – самые сложные по технической реализации и настройке и, следовательно, самые дорогие.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1043; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.