Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы координат. Системы отсчета

Все механические процессы происходят в пространстве и времени. Это находит отражение в любом механическом законе.

Положение тела в пространстве может быть определено только по отношению к другим телам. Тело отсчета – тело (система неподвижных тел), которое служит для определения положения интересующего нас тела.

Кроме тела отсчета нужна система, которая обеспечивала бы «адреса» других тел. С этой целью вводится система координат. Система координат позволяет определить положение тела в пространстве. Но нужна еще совокупность тела отсчета, связанных с ним координат и синхронизирующих часов – это система отсчета.

Заметим, что удачный выбор системы координат существенно облегчает решение задачи. Рассмотрим основные типы систем координат:

1. Прямоугольная Декартова:

А) Двухмерная;

Б) Трехмерная;

 

2. Цилиндрическая система координат:

 

 

Задание: Найти координаты точки (1,1,1) в цилиндрической системе координат.

 

3. Сферическая система координат:

 

 

Задание: Найти координаты точки (1,1,1) в сферической системе координат.

Формулы, связывающие координаты точки в одной системе отсчета с координатами в другой системе, называют формулами преобразования координат.

 

Скалярные, векторные величины. Действия над ними. Вычисление компонент вектора. Орты.

 

Для удобства координаты точки в любой системе координат будем обозначать одной буквой:

Вектор – направленный отрезок прямой, у которого один конец называется началом, а другой конец – концом. Модуль, направление, точка приложения, нулевой вектор.

Два вектора равны, если они имеют одинаковые модули и направление.

Противоположным вектору называют вектор .

Действия над векторами:

1. Сумма векторов:

a. Правило треугольника ;

b. Правило прямоугольника;

Если при действии над векторами результат не изменяется при перестановке векторов, то говорят, что вектора обладают свойством коммутативности относительно этого действия.

2. Разность векторов или ;

3. Умножение вектора на число ;

4. Скалярное произведение векторов:

Скалярным произведение векторов называют произведение модулей этих векторов на косинус угла между ними. Т.е. результат скалярного произведения – скаляр.

.

Обладает свойством коммутативности.

Пример: .

5. Векторное произведение:

В результате векторного произведения получается вектор, модуль которого равен произведению модулей перемножающихся векторов на синус угла между ними. Результирующий вектор направлен перпендикулярно плоскости перемножаемых векторов и направлен в сторону движения правого винта, если вращать его от первого вектора ко второму по кратчайшему пути.

Модуль вектора C равен площади параллелограмма, построенного на A и B.

 

 

Компоненты векторных величин.

 

 

 

Орты:

 

Скалярное и векторное произведение орт:

Скалярные произведения одноименных орт равны 1, разноименных – 0.

Векторное произведение одноименных орт равно 0. Модуль векторного произведения разноименных орт равен 1.

 

 

Действия над векторами в координатной форме.

 

Сумма векторов:

Компонент суммы двух векторов – сумма компонент слагаемых.

Скалярное произведение:

Векторное произведение:

Радиус вектор – вектор, проведенный из начала координат в данную точку.

 

 

Перемещение и скорость в векторной и координатной формах.

 

Траектория – линия, вдоль которой движется тело.

Путь – расстояние вдоль траектории.

Перемещение – кратчайшее расстояние.

Вектором мгновенной скорости называют вектор, равный производной радиус-вектора по времени (направлен по касательной).

При прямолинейном движении .

Абсолютное значение скорости (модуль):

В общем случае при прямолинейном движении

 

 

Если , то через параметры траектории:

 

 

Ускорение в векторной и координатной формах.

вектор среднего ускорения (скорость изменения скорости)

 

 

1.

 

Вращательное движение:

Изменение линейной скорости по направлению (меняется только направление).

Вектор ускорения – вторая производная вектора перемещения по времени.

 

 

Кинематика вращательной точки. Угловая скорость.

 

n – число оборотов.

Если w=const, то w - круговая (циклическая) частота.

Т – период (время одного оборота).

- линейная частота.

Модуль равен углу поворота и направлен по оси вращения так, что направление поворота отвечает правилу винта.

 

 

- угловое ускорение.

a) При равноускоренном движении вектор направлен в ту же сторону что и .

b) При равнозамедленном – в обратную.

Вектора r, v и a называют естественными или полярными векторами.

Вектора - аксиальными.

Аксиальные вектора введены для объяснения физических процессов при вращательном движении. Они, так же как и полярные вектора подчиняются правилу сложения векторов.

 

Связь между линейными и угловыми величинами.

 

, r – радиус-вектор.

По определению векторного произведения .

an=aц – изменение скорости по направлению за единицу времени.

at – изменение скорости по модулю за единицу времени. При равномерном движении at=0.

 

 

Преобразование координат и компонент векторов.

 

Формулы, связывающие координаты точки в одной системе координат с координатами в другой называются преобразование координат.

 

(1)

Для определения компоненты x умножим скалярно (1) на i:

Тогда (2) запишем для случая ax=0 (поворот):

Пример: Преобразование координат для двухмерного случая.

 

 

Значение скалярной величины определяется одним числом.

Значение вектора определяется тремя числами, которые называют компоненты вектора.

Более общее определение вектора:

Вектор – это упорядоченная совокупность трех чисел, зависящих от системы координат и преобразующихся при повороте системы отсчета так же, как преобразуются компоненты вектора.

При параллельном переносе компоненты вектора не изменяются:

Вектор тот же, но системы разные.

означает в координатной форме равенство компонент.

Величины, значения которых не изменяются при преобразованиях, называются инвариантами.

 

 

Вращение вокруг неподвижной оси.

 

Для точки mi имеем:

Рассмотрим момент импульса относительно оси 0. Общий момент импульса равен:

- двойное векторное произведение.

или

 

Запишем проекцию Nx:

 

 

Аналогично преобразуем Nz .

 

 

Введем инерциальные коэффициенты или моменты инерции:

Имеем:

, , .

 

 

 

Здесь обозначения аналогичные.

Совокупность величин образует тензор инерции.

Тензор симметричный, т.е. и т.д. Таким образом тензор инерции определяется 6 числами.

Главные оси тензора инерции.

Симметричный тензор можно представить наглядно в виде эллипсоида, в данном случае эллипсоида инерции.

 

Тензор (второго ранга) – упорядоченная система 9 чисел, которые связывают два вектора.

Вектор (тензор первого ранга) – упорядоченная система трех чисел, которые преобразуются при изменении системы координат.

Скаляр (тензор нулевого ранга) – число, не изменяющееся при изменении системы координат.

 

 

<== предыдущая лекция | следующая лекция ==>
Для заметок | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1946; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.07 сек.