Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа и мощность электрического тока

Топливные элементы. В топливном элементе осуществляется прямое преобразование химической энергии в электрическую. В чем заключается принцип работы и каково устройство топливного элемента?

Термоэмиссионные преобразователи (ТЭП). Если какое-либо твердое тело (металл, полупроводник) поместить в вакуум, то известное количество электронов этого тела перейдет в вакуум (Описываемое явление наблюдается и у жидкостей). Это явление называется термоэлектронной эмиссией, а твердое тело, испускающее электроны, - эмиттером. Эмиссия электронов тем больше, чем выше температура эмиттера. В процессе эмиссии электронов эмиттер охлаждается. Через некоторое время после начала электронной эмиссии (после помещения тела в вакуум) установится равновесие: сколько электронов в единицу времени будет выходить из твердого тела за счет электронной эмиссии, столько же в него будет возвращаться в результате так называемой конденсации электронов. Охлаждения твердого тела в состоянии равновесия более не происходит.

Но можно поступить иначе: поместить в вакуум два тела (два электрода), причем к одному из них (электроду-эмиттеру) подводить тепло и поддерживать его при более высокой температуре, а от второго (электрода-коллектора) тепло отводить, с тем чтобы его температура оставалась более низкой.


Рис. 24. Термоэлемент

Если теперь эмиттер и коллектор замкнуть внешней электрической цепью, то по ней потечет ток; описанное устройство станет источником тока, термоэмиссионным преобразователем (ТЭП). Из сказанного следует, что ТЭП (так же, как и ТЭГ) преобразует тепловую энергию в электрическую (минуя ступень механической энергии) и, следовательно, подчиняется ограничениям, установленным вторым законом термодинамики.

Если, используя ТЭП, можно было бы получать большие количества электроэнергии, а его основные технико-экономические показатели (стоимость и КПД) были благоприятны, то энергетика получила бы «в лице» ТЭП хороший электрический генератор, работающий по принципу прямого преобразования энергии.

В настоящее время еще не достигнуты такие технико-экономические показатели ТЭП, которые могли бы удовлетворить энергетику. Поэтому ТЭП пока что используются, как и ТЭГ, в случаях, когда требуются относительно малые мощности. Однако работа по улучшению показателей ТЭП ведется высокими темпами.

Можно, например, сжечь водород в атмосфере кислорода. В результате образуется вода и выделяется тепло, которое затем можно использовать в теплосиловом двигателе. А можно пойти другим путем, как это и делается в топливном элементе, разделив реакцию горения водорода на два процесса, в одном из которых участвует водород, а в другом - кислород.

Схема топливного элемента представлена на рис. 25. Он состоит из двух электродов, на один из которых подается водород, а на другой - кислород, и электролита. Существенным отличием топливного элемента от электрического аккумулятора и его преимуществом является то, что запас горючего и окислителя в топливном элементе, в данном случае водорода и кислорода, непрерывно пополняется.

Водород, попадая на металлический электрод и находясь на разделе трех фаз - твердого электрода, электролита и газовой фазы, - переходит в атомарное состояние (его двухатомная молекула разделяется на атомы), а атомы делятся на свободные электроны и ядра атомов (ионы). Электроны уходят в металл, а ядра атомов- в раствор (электролит). Вследствие этого электрод насыщается отрицательно заряженными электронами, а электролит - положительно заряженными ионами.

Аналогичный процесс происходит на втором электроде, на который подается кислород. В результате проходящих у поверхности электрода процессов на нем появляются положительные электрические заряды. Кроме того, возникают отрицательные заряженные ионы ОН, которые остаются в электролите и, соединяясь с ионами водорода, образуют воду.

Если соединить внешней цепью оба электрода, то возникнет электрический ток (рис. 25). Таким путем химическая энергия превращается в электрическую. Поскольку в топливном элементе отсутствует промежуточная стадия преобразования химической энергии в тепловую, его КПД не имеет ограничений, присущих тепловому двигателю. Водород-кислородный элемент работает при низкой температуре, а его КПД вполне может достигать 65 - 70%.


Рис. 25. Схема топливного элемента

Не следует, однако, думать, что создать топливный элемент просто и легко. Обычно все относительно просто, пока речь идет о схеме, но как только переходишь к ее реализации, появляется масса трудностей. Не случайно поэтому, что идея топливного элемента появилась в середине XIX в., а подходящей конструкции для широкого применения нет и по сей день.

В проблеме топливного элемента много трудностей: проведение всех процессов с большой скоростью (залог получения больших абсолютных и удельных мощностей); выбор материала и создание высококачественных электродов; создание высокоэффективных электролитов (жидких и твердых в зависимости от типа топливного элемента); возможность работы на дешевом топливе.

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 — тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 — химической, в фотоэлементах 11 — лучистой.
Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии — тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 — в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде — в химическую, в электрических лампах 6 — в лучистую и тепловую, в антеннах 4 радиопередатчиков — в лучистую.

Рис. 30. Пути превращения энергии из одного вида в другой

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), — очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы — ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*106 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*109 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I2R (31)

или

P = U2/R = U2G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.
Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

? = P2/P1 = P2/(P2 +?P) (33)

где

Р2 — отдаваемая (полезная) мощность;
Р1 — получаемая мощность;
?Р — потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86—92 %, мощные трансформаторы — 96—98 %, тяговые подстанции — 94—96 %, контактная сеть электрифицированных железных дорог — около 90 %, генераторы тепловозов — 92—94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Рmx = 28,9 кВт, а отдает электрическую мощность Рэл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д.?ген = Рэлmx = 26/28,9 = 0,9.

Мощность Рэл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности?Pпр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

Рис. 31. Схема преобразования энергии в электрической цепи

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д.?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.

 

 

<== предыдущая лекция | следующая лекция ==>
Пьезоэлектрические преобразователи | Построение движения по заданной скорости
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 458; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.