Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частные производные

Частной производной поx функцииz = f (x, y) в точкеM 0(x 0, y 0) называется предел

,

если этот предел существует. Обозначается эта частная производная любым из следующих символов:

;;.

Частная производная по x есть обычная производная от функции z = f (x, y), рассматриваемой как функция только от переменной x при фиксированном значении переменной y.

Совершенно аналогично можно определить частную производную по y функции z = f (x, y) в точкеM 0(x 0, y 0):

=.

В пространстве XYZ условие y = y 0 описывает плоскость P, перпендикулярную оси OY и пересекающую эту ось в точке y 0. Плоскость P пересекается с графиком функции z = f (x, y), вдоль некоторой линии L, как показано на рисунке 1. Тангенс угла между плоскостью XOY и касательной к линии L в точке с координатами x 0, y 0 равен частной производной по x функции z = f (x, y)в этой точке. В этом состоит геометрический смысл частной производной.

Аналогичное заключение можно сделать относительно частной производной по y.

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z = f (x, y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Примеры. 1. .

2.

Если частные производные функции z = f (x, y) существуют на некотором множестве, а точка, в которой вычисляются частные производные несущественна, то пользуются более короткими обозначениями:

.

Сами частные производные могут являться функциями от нескольких переменных на некотором множестве. У этих функций тоже могут существовать частные производные по x и по y. Они называются вторыми частными производными или частными производными второго порядка и обозначаются zxx ¢¢, zyy¢¢, zxy¢¢ или . Согласно определению ; . Последняя частная производная второго порядка называется смешанной. Смешанная частная производная второго порядка, вообще говоря, зависит от того, в какой последовательности берутся переменные, по которым вычисляется производная. Так, производная zxy¢¢ = (zx¢) y¢ может не быть равной zyx¢¢ = (zy¢) x¢. Однако существует теорема, утверждающая, что если смешанные частные производные второго порядка непрерывны, то они не зависят от того, в какой последовательности вычислялись частные производные по x и по y.

Пример. Рассмотрим функцию , где x — численность в городах, S — расстояние между городами, P — пассажиропоток. Тогда при одном и том же расстоянии между городами увеличение потока пассажиров пропорционально удвоенному числу жителей: ; при одной и той же численности жителей увеличение потока пассажиров обратно пропорционально квадрату расстояния между городами: .

 

<== предыдущая лекция | следующая лекция ==>
Функция нескольких переменных. Основные понятия | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 283; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.