Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рентгеновское излучение, его использование в медицине




Лекция 5

1. Природа и свойства рентгеновского излучения. Закон Мозли. Интенсивность Р.И.

2. Взаимодействие рентгеновского излучения с веществом. Эффект Комптона.Закон Бугера.

3. Использование Р.И. в медицинской практике.

 

1. Рентгеновское излучение-это электромагнитное излучение с длиной волны от 0,01 до 0,000001мкм. Оно вызывает свечение экрана, покрытого люминофором, и почернение эмульсии, благодаря чему его можно использовать для фотографирования.

Рентгеновские лучи возникают при резкой остановке электронов при их ударе об анод в рентгеновской трубке. Предварительно электроны, эмитируемые катодом, разгоняются ускоряющей разностью потенциалов до скоростей порядка 100000км/с. Это излучение, называемое тормозным, имеет сплошной спектр. Интенсивность Р.И. определяется эмпирической формулой

, где I-сила тока в трубке, U-напряжение, z-порядковый номер атома вещества анода,k-const.

Рентгеновское излучение, возникающее в результате торможения электронов, называется тормозным.

Коротковолновое Р.И. обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое-мягким.

При больших напряжениях в рентгеновской трубке наряду с Р.И. имеющим сплошной спектр, возникает Р.И., имеющее линейчатый спектр; последний налагается на сплошной спектр. Это излучение называется характеристическим, так как каждое вещество имеет собственный, характерный для него линейчатый рентгеновский спектр.

Рентгеновские лучи не отклоняются в электрическом и магнитном полях и, следовательно, не несут электрического заряда; обладают фотографическим действием; вызывают ионизацию газа; способны вызывать люминесценцию; могут преломляться, отражаться, обладают поляризацией и дают явление интерференции и дифракии.

Закон Мозли

Так как атомы различных веществ имеют различные энергетические уровни в зависимости от их строения, то и спектры характеристического излучения зависят от строения атомов вещества анода. Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:

, где -частота спектральной линии, z-порядковый номер испускаемого элемента, А и В-постоянные.

2. Взаимодействие Р.И. с веществом.

В зависимости от соотношения энергии фотона и энергии ионизации А имеют место три главных процесса.

Когерентное (классическое) рассеяние.

Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, когда энергия фотона меньше энергии ионизации: . Так как в этом случае энергия фотона Р.И. и атома не изменяются, то когерентное рассеяние само по себе не вызывает биологического действия.

Некогерентное рассеяние (эффект Комптона). В 1922г. А. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного Р.И. больше, чем падающего. Рассеяние Р.И. с излучением длины волны называют некогерентным, а само явление –эффектом Комптона.

Фотоэффект. При фотоэффекте Р.И. поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Ионизирующее действие Р.И. проявляется в увеличении электропроводимости под воздействием Р.И.. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Рентгенолюминесценцией называют свечение ряда веществ при рентгеновском облучении. Используется для создания светящихся экранов для визуального наблюдения Р.И.

Поглощение Р.И. описывается законом Бугера:

, где -линейный коэффициент ослабления,

х-толщина слоя вещества, Ф0-интенсивность падающего излучения, Ф-интенсивность прошедшего излучения.

3. Использование Р.И. в медицинской практике

3.1. Рентгеновская диагностика

Рентгеновская диагностика основана на избирательном поглощении тканями и органами рентгеновского излучения.

Рентгеноскопия. При рентгеноскопии изображение просвечиваемого объекта получают на флюороскопическом экране. Методика проста и экономична, позволяет наблюдать за движением органов и за перемещением в них контрастного вещества. Однако она обладает и недостатками: после нее не остается документа, который мог бы обсуждаться или рассматриваться в дальнейшем. На экране плохо различимы мелкие детали изображения. Рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на больного и врача, чем рентгенография.

Рентгенография. При рентгенографии пучок рентгеновских лучей направляется на исследуемую часть тела. Излучение, прошедшее через тело человека, попадает на пленку, на которой после ее обработки получается изображение.

Электрорентгенография. В ней пучок Р.И., прошедший через больного, попадает на заряженную статическим электричеством селеновую пластинку. При это пластина изменяет свой электрический потенциал, на ней возникает скрытое изображение из электрических зарядов. Далее пластинку опыляют черным порошком, который прилипая к пластине, воссоздает на ней изображение. Затем изображение переносится на бумагу. Главное достоинство метода –возможность быстро получить большое число качественных снимков без расхода рентгеновской пленки, содержащей дорогостоящие соединения серебра, и без «мокрого» фотопроцесса.

Флюрография. Ее принцип состоит в фотографировании рентгеновского изображения с экрана на малоформатную катушечную пленку. Применяется при массовых обследованиях населения. Преимущества метода-быстрота, экономичность.

Искусственное контрастирование органов. Метод основан на введении в организм безвредных веществ, которые поглощают Р.И. гораздо сильнее или, наоборот, гораздо слабее, чем исследуемый орган. Например, больному рекомендуется принять водную взвесь сульфата бария. При этом на снимке появляется тень контрастной массы, находящейся в полости желудка. По положению, форме, величине и очертаниям тени можно судить о положении желудка, форме и величине ее полости. Йод используется для контрастирования щитовидной железы. Из газов для этой цели используют кислород, закись азота, углекислый газ. В кровяное русло можно вводить только закись азота и углекислый газ, так как они в противоположность кислороду не вызывают газовой эмболии.

Ангиография - метод контрастного исследования кровеносной системы, в котором под визуальным рентгеновским контролем с помощью УРИ и телевидения рентгенолог вводит в вену тонкую эластичную трубку – катетер и направляет его вместе с током крови практически в любую область тела, даже в сердце. Затем в нужный момент по катетеру вводится рентгено-контрастная жидкость и одновременно делается серия снимков, с большой скоростью следующих друг за другом.

Воздействие Р.И. на организм. Хотя лучевые нагрузки при рентгенологических исследованиях невелики, они могут приводить к изменениям в хромосомном аппарате клеток –радиационным мутациям. Поэтому рентгеновские исследования должны регламентироваться.

 

Примеры решения задач

1. Вычислить максимальную частоту в спектре рентгеновских лучей, которые испускает трубка рентгенодиагностической установки, находящаяся под напряжением 50 кВ.

Решение: Кинетическая энергия электрона, бомбардирующего анод рентгеновской трубки. Создается за счет энергии ускоряющего поля eU. Эта энергия превращается в энергию фотона рентгеновского излучения

Гц

2. В качестве экрана для защиты врача-рентгенолога от рентгеновского излучения в диагностической установке используют свинец толщиной 0,5см. Его коэффициент поглощения равен 52,5см-1. Какой толщины следует взять алюминий, имеющий коэффициент поглощения 0,765 см-1 чтобы он экранировал в такой же степени?

Решение: Согласно закону Бугера .Запишем его дважды для свинца и алюминия:

;

Так как или см

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1425; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.