Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Преобразование Лапласа и его свойства




Лекция 1

Основы операционного исчисления

Допоміжна

Базова

1. Солодков А.С., Физиология человека. Общая. Спортивная. Возрастная: Уч. / А.С. Солодков., Е.Б. Сологуб – М.: Терра-Спорт, Олимпия-Пресс, 2001.– 520 с.

2. Дубровский В.И. Спортивная физиология: учебник для сред. и высш. учеб. заведений по физ. культуре. / В.И. Дубровский – М.: Гуманитар. изд. центр ВЛАДОС, 2005. – 462с.

3. Волков Н.И. Биохимия мышечной деятельности: Учебник. / Н.И Волков, Э.Н. Нессен., А.А. Осиненко, С.Н. Корсун − Киев.: Олимпийская литература, 2000.− 503 с.

4. Уилмор Дж.Х. Физиология спорта (перевод с английского): Учебник. / Дж.Х. Уилмор, Д.Л. Костилл – Киев: Олимпийская литература, 2001. − 503 с.

 

 

Операционное исчисление применяется при нахождении как частных, так и общих решений линейных дифференциальных уравнений любого порядка с постоянными коэффициентами, при этом правая часть уравнения на различных интервалах может быть задана различными аналитическими выражениями, а также может иметь точки разрыва. Операционный метод используется для решения однородных и неоднородных систем дифференциальных уравнений, причем правые части неоднородных систем также могут быть заданы на различных интервалах различными аналитическими выражениями и иметь точки разрыва.

Операционное исчисление широко применяется для решения задач электротехники и теории автоматического регулирования, в частности позволяет найти установившийся ток в колебательном контуре при периодическом и непериодическом внешнем напряжении. Операционные методы позволяют рассчитывать процессы в сложных электрических цепях при произвольном внешнем напряжении. Операционные методы позволяют также находить решения уравнений в частных производных, которые появляются в задачах математической физики, например при решении задачи о колебательном движении струн и стержней, о распространении тепла в стержне, плоских пластинах и пространственных телах, о распространении электрических колебаний вдоль длинных цепей.

Операционное исчисление строится на основе преобразования Лапласа.

Преобразованием Лапласа или изображением по Лапласу функции вещественной переменной называется функция комплексной переменной , определяемая несобственным интегралом

. (1)

Интегралом Лапласа называется интеграл в правой части (1).

Оригиналом называется функция вещественной переменной , которая удовлетворяет условиям:

1) при ,

2) кусочно-непрерывна при ; (2)

3) при любом , где некоторые постоянные числа. Число называется п оказателем роста функции или абсциссой сходимости интеграла Лапласа.

Функция может иметь на каждом отрезке при лишь конечное число точек разрыва первого рода.

Иногда преобразованием Лапласа называется операция перехода от оригинала к изображению . Соответствие между и записывается в виде .

Если функция является оригиналом, то интеграл Лапласа сходится абсолютно и равномерно на комплексной полуплоскости .

Доказательство. Пусть , и . Тогда

.

Отсюда следует, что интеграл Лапласа сходится абсолютно при , так как он мажорируется абсолютно сходящимся интегралом. Если же , то , где в правой части неравенства получено число. Следовательно, интеграл Лапласа сходится равномерно при .

Преобразование Лапласа устанавливает связь между оригиналами и их изображениями. Определенным действиям, производимым над оригиналами соответствуют некоторые действия, производимые над их изображениями, причем действия над изображениями оказываются более простыми, чем над оригиналами. В частности, дифференциальному уравнению относительно оригинала соответствует алгебраическое уравнение относительно изображения. Если решить это алгебраическое уравнение и затем найти оригинал полученного решения, то тем самым будет получено решение исходного дифференциального уравнения.

Единичной функцией Хевисайда называется функция . График функции Хевисайда имеет вид

Пример 1. Найти изображение единичной функции Хевисайда.

,

(3)

Условимся в дальнейшем под функцией понимать функцию, которая равна нулю при , т.е. .

Пример 2. Найти изображение показательной функции .

для .

(4)

Пример 3. Найти изображение степенной функции , и , .

(5)

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 294; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.