Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структуры данных. В рамках классической теории осуществляется классификация задач по классам сложности (P-сложные, NP-сложные

Классы сложности

В рамках классической теории осуществляется классификация задач по классам сложности (P-сложные, NP-сложные, экспоненциально сложные и др.). К классу P относятся задачи, которые могут быть решены за время, полиномиально зависящее от объёма исходных данных, с помощью детерминированной вычислительной машины (например, машины Тьюринга), а к классу NP — задачи, которые могут быть решены за полиномиально выраженное время с помощью недетерминированной вычислительной машины, то есть машины, следующее состояние которой не всегда однозначно определяется предыдущими. Работу такой машины можно представить как разветвляющийся на каждой неоднозначности процесс: задача считается решённой, если хотя бы одна ветвь процесса пришла к ответу. Другое определение класса NP: к классу NP относятся задачи, решение которых с помощью дополнительной информации полиномиальной длины, данной нам свыше, мы можем проверить за полиномиальное время. В частности, к классу NP относятся все задачи, решение которых можно проверить за полиномиальное время. Класс P содержится в классе NP. Классическим примером NP-задачи является задача о коммивояжёре.

Поскольку класс P содержится в классе NP, принадлежность той или иной задачи к классу NP зачастую отражает наше текущее представление о способах решения данной задачи и носит неокончательный характер. В общем случае нет оснований полагать, что для той или иной NP-задачи не может быть найдено P-решение. Вопрос о возможной эквивалентности классов P и NP (то есть о возможности нахождения P-решения для любой NP-задачи) считается многими одним из основных вопросов современной теории сложности алгоритмов. Ответ на этот вопрос не найден до сих пор. Сама постановка вопроса об эквивалентности классов P и NP возможна благодаря введению понятия NP-полных задач. NP-полные задачи составляют подмножество NP-задач и отличаются тем свойством, что все NP-задачи могут быть тем или иным способом сведены к ним. Из этого следует, что если для NP-полной задачи будет найдено P-решение, то P-решение будет найдено для всех задач класса NP. Примером NP-полной задачи является задача о конъюнктивной форме.

Исследования сложности алгоритмов позволили по-новому взглянуть на решение многих классических математических задач и найти для ряда таких задач (умножение многочленов и матриц, решение линейных систем уравнений и др.) решения, требующие меньше ресурсов, нежели традиционные.

Дополнительная литература

 

1. Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296.

2. Дональд Кнут Искусство программирования, том 1. Основные алгоритмы = The Art of Computer Programming, vol.1. Fundamental Algorithms. — 3-е изд. — М.: «Вильямс», 2006. — С. 720.

3. Марков А. А., Нагорный Н. М. Теория алгоритмов, изд. 2. — М.: ФАЗИС, 1996.

  • http://th-algoritmov.narod.ru/
  • А.Китаев, А.Шень, М.Вялый. Классические и квантовые вычисления
  • http://www.williamspublishing.com/Books/5-8459-0857-4.html
  • Миниэнциклопедия по теории сложности и комбинаторным алгоритмам
  • Лекции по теории сложности и комбинаторным алгоритмам
  • Принципы развития теории алгоритмов (DOC)

Получено с http://wiki.traditio.ru/index.php/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2

 

Введение

 

 

Конспект лекций

Лекция 17

Рекурсия в структурах и алгоритмах

 

Научный редактор доц., д-р техн. наук Л.Г. Доросинский

 

 

Екатеринбург

 

Содержание

 

 

1. Понятие рекурсии. 3

1.1 Рекурсивная триада. 3

1.2 Рекурсивные объекты.. 4

2. Некоторые задачи, где можно применить рекурсию.. 7

3. Использование рекурсии в графике. 11

3.1. Кривые Гильберта. 12

3.2. Кривые Серпинского. 16

 

<== предыдущая лекция | следующая лекция ==>
Современное состояние теории алгоритмов | Рекурсивная триада
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 349; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.